Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Suppose that the solutions of an equation \(A{\bf{x}} = {\bf{b}}\) are all of the form \({\bf{x}} = {x_{\bf{3}}}{\bf{u}} + {\bf{p}}\), where \({\bf{u}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right)\) and \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{\bf{4}}\end{array}} \right)\). Find points \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) such that the solution set of \(A{\bf{x}} = {\bf{b}}\) is \({\bf{aff}}\left\{ {{{\bf{v}}_{\bf{1}}},\,{{\bf{v}}_{\bf{2}}}} \right\}\).

Short Answer

Expert verified

The points are \({{\bf{v}}_1} = \left( {\begin{array}{*{20}{c}}1\\{ - 3}\\4\end{array}} \right)\) and \({{\bf{v}}_2} = \left( {\begin{array}{*{20}{c}}6\\{ - 2}\\2\end{array}} \right)\).

Step by step solution

01

Substitute the given values in the equation of x

Substitute the given values in the equation \({\bf{x}} = {x_3}{\bf{u}} + {\bf{p}}\) as shown below:

\({\bf{x}} = {x_3}\left( {\begin{array}{*{20}{c}}5\\1\\{ - 2}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1\\{ - 3}\\4\end{array}} \right)\)

02

Find the value of \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\)

Substitute 0 for \({x_3}\) in the equation \({\bf{x}} = {x_3}\left( {\begin{array}{*{20}{c}}5\\1\\{ - 2}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1\\{ - 3}\\4\end{array}} \right)\) to find \({{\bf{v}}_1}\) as shown below:

\(\begin{array}{c}{{\bf{v}}_1} = 0\left( {\begin{array}{*{20}{c}}5\\1\\{ - 2}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1\\{ - 3}\\4\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1\\{ - 3}\\4\end{array}} \right)\end{array}\)

Substitute 1 for \({x_3}\) in the equation \({\bf{x}} = {x_3}\left( {\begin{array}{*{20}{c}}5\\1\\{ - 2}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1\\{ - 3}\\4\end{array}} \right)\) to find \({{\bf{v}}_2}\) as shown below:

\(\begin{array}{c}{{\bf{v}}_1} = 1\left( {\begin{array}{*{20}{c}}5\\1\\{ - 2}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1\\{ - 3}\\4\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}6\\{ - 2}\\2\end{array}} \right)\end{array}\)

So, one of the points are \({{\bf{v}}_1} = \left( {\begin{array}{*{20}{c}}1\\{ - 3}\\4\end{array}} \right)\) and \({{\bf{v}}_2} = \left( {\begin{array}{*{20}{c}}6\\{ - 2}\\2\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(W = \left\{ {{{\bf{v}}_1},......,{{\bf{v}}_p}} \right\}\). Show that if \({\bf{x}}\) is orthogonal to each \({{\bf{v}}_j}\), for \(1 \le j \le p\), then \({\bf{x}}\) is orthogonal to every vector in \(W\).

Question 2: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}0\\{ - 1}\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\1\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right)\) in \({\mathbb{R}^{\bf{2}}}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 2{x_1} + {x_2}\)

Question: 16. Let \({\rm{v}} \in {\mathbb{R}^n}\)and let \(k \in \mathbb{R}\). Prove that \(S = \left\{ {{\rm{x}} \in {\mathbb{R}^n}:{\rm{x}} \cdot {\rm{v}} = k} \right\}\)is an affine subset of \({\mathbb{R}^n}\).

Question 4: Repeat Exercise 2 where \(m\) is the minimum value of \(f\) on \(S\) instead of the maximum value.

Question: 19. Let \(S\) be an affine subset of \({\mathbb{R}^n}\) , suppose \(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\)is a linear transformation, and let \(f\left( S \right)\) denote the set of images \(\left\{ {f\left( {\rm{x}} \right):{\rm{x}} \in S} \right\}\). Prove that \(f\left( S \right)\)is an affine subset of \({\mathbb{R}^m}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free