Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) and \({\mathop{\rm x}\nolimits} \ge 0\).

7. \(A = \left( {\begin{array}{*{20}{c}}1&3\\1&1\\4&1\end{array}} \right),{\rm{ }}{\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}{18}\\{10}\\{28}\end{array}} \right)\)

Short Answer

Expert verified

The minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}7\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}6\\4\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\6\end{array}} \right)} \right\}\).

Step by step solution

01

The three inequalities in \(A{\mathop{\rm x}\nolimits}  \le {\mathop{\rm b}\nolimits} \)

The three matrix inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) yield the following system of inequalities:

  1. \({x_1} + 3{x_2} \le 18\)
  2. \({x_1} + {x_2} \le 10\)
  3. \(4{x_1} + {x_2} \le 28\)
02

Determine the \({{\mathop{\rm x}\nolimits} _1}\)-intercept and \({{\mathop{\rm x}\nolimits} _2}\)-intercept of the three lines

The condition \({\mathop{\rm x}\nolimits} \ge 0\) places polytope \(P\) in the first quadrant of the plane. One vertex is \(\left( {0,0} \right)\).

The \({{\mathop{\rm x}\nolimits} _1}\)-intercepts\(\left( {{\mathop{\rm If}\nolimits} {{\mathop{\rm x}\nolimits} _2} = 0} \right)\) of the three lines are 18, 10, and 7, so \(\left( {7,0} \right)\) is a vertex. The \({{\mathop{\rm x}\nolimits} _2}\)-intercepts \(\left( {{\mathop{\rm If}\nolimits} {{\mathop{\rm x}\nolimits} _1} = 0} \right)\) of the three lines are 6, 10, and 28, then \(\left( {0,6} \right)\) is a vertex.

03

Determine the intersection point corresponds to inequalities

The intersection of (a) and (b) is at \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm a}\nolimits} {\mathop{\rm b}\nolimits} }} = \left( {6,4} \right)\). Testing \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm ab}\nolimits} }}\) in (c) gives \(4\left( 6 \right) + 4 = 28\), so \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm ab}\nolimits} }}\) is in \({\mathop{\rm P}\nolimits} \).

04

Determine the minimal representation of the polytope

The set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},..,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is aminimal representation of the polytope\(P\)when\(P = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) and for each \(i = 1,...,k\), \({{\mathop{\rm v}\nolimits} _1} \notin \left\{ {{{\mathop{\rm v}\nolimits} _j}:j \ne i} \right\}\).

The four vertices of the polytope are \(\left( {0,0} \right),\left( {7,0} \right)\left( {6,4} \right),\,\,{\mathop{\rm and}\nolimits} \,\,\left( {0,6} \right)\).

Thus, the minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}7\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}6\\4\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\6\end{array}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

9.

a. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1} - {{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _2},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _2}} \right\}\) is linearly dependent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent. (Read this carefully.)

b. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set of homogeneous forms \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent.

c. A finite set of points \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is affinely dependent if there exist real numbers \({c_1},...,{c_k}\) , not all zero, such that \({c_1} + ... + {c_k} = 1\) and \({c_1}{{\mathop{\rm v}\nolimits} _1} + ... + {c_k}{{\mathop{\rm v}\nolimits} _k} = 0\).

d. If \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely independent set in \({\mathbb{R}^n}\) and if p in \({\mathbb{R}^n}\) has a negative barycentric coordinate determined by S, then p is not in \({\mathop{\rm aff}\nolimits} S\).

e.

If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},a,\) and \(b\) are in \({\mathbb{R}^3}\) and if ray \({\mathop{\rm a}\nolimits} + t{\mathop{\rm b}\nolimits} \) for \(t \ge 0\) intersects the triangle with vertices \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},\) and \({{\mathop{\rm v}\nolimits} _3}\) then the barycentric coordinates of the intersection points are all nonnegative.

Let\(\left\{ {{p_1},{p_2},{p_3}} \right\}\)be an affinely dependent set of points in\({\mathbb{R}^{\bf{n}}}\)and let\(f:{\mathbb{R}^{\bf{n}}} \to {\mathbb{R}^{\bf{m}}}\)be a linear transformation. Show that\(\left\{ {f\left( {{{\bf{p}}_1}} \right),f\left( {{{\bf{p}}_2}} \right),f\left( {{{\bf{p}}_3}} \right)} \right\}\)is affinely dependent in\({\mathbb{R}^{\bf{m}}}\).

Question: 30. Prove that the convex hull of a bounded set is bounded.

In Exercises 21-26, prove the given statement about subsets A and B of \({\mathbb{R}^n}\), or provide the required example in \({\mathbb{R}^2}\). A proof for an exercise may use results from earlier exercises (as well as theorems already available in the text).

25. \({\mathop{\rm aff}\nolimits} \left( {A \cap B} \right) \subset \left( {{\mathop{\rm aff}\nolimits} A \cap {\mathop{\rm aff}\nolimits} B} \right)\)

Question: 20. Let \(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\) is a linear transformation, and let \(T\) be an affine subset of \({\mathbb{R}^{\bf{m}}}\), and let \(S = \left\{ {{\bf{x}} \in {\mathbb{R}^n}\,:\,f\left( {\bf{x}} \right) \in T} \right\}\). Show that \(S\) is an affine subset of \({\mathbb{R}^m}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free