Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercise 7, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{4}}\\{\bf{1}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{ - {\bf{2}}}\\{\bf{5}}\end{array}} \right)\)

Short Answer

Expert verified
  1. The normal vector is \(n = \left( {\begin{array}{*{20}{c}}0\\2\\3\end{array}} \right)\) or a multiple
  2. The linear function is \(f\left( x \right) = 2{x_2} + 3{x_3}\) , and the real number is \(d = 11\).

Step by step solution

01

Write the given data

Let \({v_1} = \left( {\begin{array}{*{20}{c}}1\\1\\3\end{array}} \right)\), \({v_2} = \left( {\begin{array}{*{20}{c}}2\\4\\1\end{array}} \right)\), and \({v_3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 2}\\5\end{array}} \right)\).

Then, \({v_2} - {v_1} = \left( {\begin{array}{*{20}{c}}1\\3\\{ - 2}\end{array}} \right),\) and \({v_3} - {v_1} = \left( {\begin{array}{*{20}{c}}{ - 2}\\{ - 3}\\2\end{array}} \right)\).

02

Use the cross product to compute n

(a)

\(\begin{array}{c}n = \left( {{v_2} - {v_1}} \right) \times \left( {{v_3} - {v_1}} \right)\\ = \left| {\begin{array}{*{20}{c}}1&{ - 2}&i\\3&{ - 3}&j\\{ - 2}&2&k\end{array}} \right|\\ = \left| {\begin{array}{*{20}{c}}3&{ - 3}\\{ - 2}&2\end{array}} \right|i - \left| {\begin{array}{*{20}{c}}1&{ - 2}\\{ - 2}&2\end{array}} \right|j + \left| {\begin{array}{*{20}{c}}1&{ - 2}\\3&{ - 3}\end{array}} \right|k\\ = 0i + 2j + 3k\end{array}\)

Thus, the normal vector is \(n = \left( {\begin{array}{*{20}{c}}0\\2\\3\end{array}} \right)\).

03

Find a linear functional f and a real number d

(b)

Using part (a) to obtain the linear functional f as shown below:

\(\begin{array}{c}f\left( x \right) = n \cdot x\\ = \left( {\begin{array}{*{20}{c}}0&2&3\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right)\\f\left( x \right) = 2{x_2} + 3{x_3}\end{array}\)

Note that, \({v_i}\) in \(H = \left( {f:d} \right)\) such that, \(f\left( {{v_i}} \right) = d\) for \(i = 1,2,3\).

\(\begin{array}{c}d = f\left( {{v_1}} \right)\\ = f\left( {1,1,3} \right)\\ = 2\left( 1 \right) + 3\left( 3 \right)\\ = 2 + 9\\d = 11\end{array}\)

Thus, the linear function is \(f\left( x \right) = 2{x_2} + 3{x_3}\) , and the real number is \(d = 11\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 15. Let \(A\) be an \({\rm{m}} \times {\rm{n}}\) matrix and, given \({\rm{b}}\) in \({\mathbb{R}^m}\), show that the set \(S\) of all solutions of \(A{\rm{x}} = {\rm{b}}\) is an affine subset of \({\mathbb{R}^n}\).

Question:28. Give an example of a compact set\(A\)and a closed set\(B\)in\({\mathbb{R}^2}\)such that\(\left( {{\rm{conv}}\,A} \right) \cap \left( {{\rm{conv}}\,B} \right) = \emptyset \)but\(A\)and\(B\)cannot be strictly separated by a hyperplane.

Question: 16. Let \({\rm{v}} \in {\mathbb{R}^n}\)and let \(k \in \mathbb{R}\). Prove that \(S = \left\{ {{\rm{x}} \in {\mathbb{R}^n}:{\rm{x}} \cdot {\rm{v}} = k} \right\}\)is an affine subset of \({\mathbb{R}^n}\).

Explain why a cubic Bezier curve is completely determined by \({\mathop{\rm x}\nolimits} \left( 0 \right)\), \(x'\left( 0 \right)\), \({\mathop{\rm x}\nolimits} \left( 1 \right)\), and \(x'\left( 1 \right)\).

Question: Let \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{3}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{ - {\bf{1}}}\\{\bf{3}}\end{array}} \right)\), \({{\bf{n}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{4}}\\{\bf{2}}\end{array}} \right)\), and \({{\bf{n}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{3}}\\{\bf{1}}\\{\bf{5}}\end{array}} \right)\), let \({H_{\bf{1}}}\) be the hyperplane in \({\mathbb{R}^{\bf{4}}}\) through \({{\bf{p}}_{\bf{1}}}\) with normal \({{\bf{n}}_{\bf{1}}}\), and let \({H_{\bf{2}}}\) be the hyperplane through \({{\bf{p}}_{\bf{2}}}\) with normal \({{\bf{n}}_{\bf{2}}}\). Give an explicit description of \({H_{\bf{1}}} \cap {H_{\bf{2}}}\). (Hint: Find a point p in \({H_{\bf{1}}} \cap {H_{\bf{2}}}\) and two linearly independent vectors \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) that span a subspace parallel to the 2-dimensional flat \({H_{\bf{1}}} \cap {H_{\bf{2}}}\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free