Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) and \({\mathop{\rm x}\nolimits} \ge 0\).

6. \(A = \left( {\begin{array}{*{20}{c}}2&3\\4&1\end{array}} \right),{\rm{ }}{\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}{18}\\{16}\end{array}} \right)\)

Short Answer

Expert verified

The minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\4\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\6\end{array}} \right)} \right\}\).

Step by step solution

01

The two inequalities in \(A{\mathop{\rm x}\nolimits}  \le {\mathop{\rm b}\nolimits} \)

The matrix inequalities \(A{\bf{x}} \le {\bf{b}}\) yield the following system of inequalities:

  1. \(2{{\mathop{\rm x}\nolimits} _1} + 3{{\mathop{\rm x}\nolimits} _2} \le 18\)
  2. \(4{{\mathop{\rm x}\nolimits} _1} + {{\mathop{\rm x}\nolimits} _2} \le 16\)
02

Determine the \({{\mathop{\rm x}\nolimits} _1}\)-intercept and \({{\mathop{\rm x}\nolimits} _2}\)-intercept of the two lines

The condition \({\mathop{\rm x}\nolimits} \ge 0\) places polytope \(P\) in the first quadrant of the plane. One vertex is \(\left( {0,0} \right)\).

The \({{\mathop{\rm x}\nolimits} _1}\)-intercepts\(\left( {{\mathop{\rm If}\nolimits} {{\mathop{\rm x}\nolimits} _2} = 0} \right)\) of the two lines are 9 and 4, so \(\left( {4,0} \right)\) is a vertex.

The \({{\mathop{\rm x}\nolimits} _2}\)-intercepts\(\left( {{\mathop{\rm If}\nolimits} {{\mathop{\rm x}\nolimits} _1} = 0} \right)\) of the two lines are 6 and 16, then \(\left( {0,6} \right)\) is a vertex.

03

Determine the intersection point corresponds to inequalities

The intersection of (a) is at \({{\mathop{\rm P}\nolimits} _{\mathop{\rm a}\nolimits} } = \left( {3,4} \right)\). Testing \({{\mathop{\rm P}\nolimits} _a}\) in (b) gives \(4\left( 3 \right) + 4 = 16\), so \({{\mathop{\rm P}\nolimits} _a}\) is in \({\mathop{\rm P}\nolimits} \).

04

Determine the minimal representation of the polytope

The set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},..,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is aminimal representation of the polytope\(P\)when \(P = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) and for each \(i = 1,...,k\), \({{\mathop{\rm v}\nolimits} _1} \notin \left\{ {{{\mathop{\rm v}\nolimits} _j}:j \ne i} \right\}\).

The four vertices of the polytope are \(\left( {0,0} \right),\left( {4,0} \right)\left( {3,4} \right),\,\,{\mathop{\rm and}\nolimits} \,\,\left( {0,6} \right)\).

Thus, the minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\4\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\6\end{array}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose \({\bf{y}}\) is orthogonal to \({\bf{u}}\) and \({\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to every \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\). (Hint: An arbitrary \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\) has the form \({\bf{w}} = {c_1}{\bf{u}} + {c_2}{\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to such a vector \({\bf{w}}\).)

In Exercises 11 and 12, mark each statement True or False. Justify each answer.

12.a. The essential properties of Bezier curves are preserved under the action of linear transformations, but not translations.

b. When two Bezier curves \({\mathop{\rm x}\nolimits} \left( t \right)\) and \(y\left( t \right)\) are joined at the point where \({\mathop{\rm x}\nolimits} \left( 1 \right) = y\left( 0 \right)\), the combined curve has \({G^0}\) continuity at that point.

c. The Bezier basis matrix is a matrix whose columns are the control points of the curve.

Let\(\left\{ {{p_1},{p_2},{p_3}} \right\}\)be an affinely dependent set of points in\({\mathbb{R}^{\bf{n}}}\)and let\(f:{\mathbb{R}^{\bf{n}}} \to {\mathbb{R}^{\bf{m}}}\)be a linear transformation. Show that\(\left\{ {f\left( {{{\bf{p}}_1}} \right),f\left( {{{\bf{p}}_2}} \right),f\left( {{{\bf{p}}_3}} \right)} \right\}\)is affinely dependent in\({\mathbb{R}^{\bf{m}}}\).

Question: In Exercise 7, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{4}}\\{\bf{1}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{ - {\bf{2}}}\\{\bf{5}}\end{array}} \right)\)

Let \(W = \left\{ {{{\bf{v}}_1},......,{{\bf{v}}_p}} \right\}\). Show that if \({\bf{x}}\) is orthogonal to each \({{\bf{v}}_j}\), for \(1 \le j \le p\), then \({\bf{x}}\) is orthogonal to every vector in \(W\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free