Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\bf{x}} \le {\bf{b}}\) and \({\bf{x}} \ge {\bf{0}}\).

5. \(A = \left( {\begin{array}{*{20}{c}}1&2\\3&1\end{array}} \right),{\rm{ }}{\bf{b}} = \left( {\begin{array}{*{20}{c}}{{\bf{10}}}\\{{\bf{15}}}\end{array}} \right)\)

Short Answer

Expert verified

The minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}5\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\3\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\5\end{array}} \right)} \right\}\).

Step by step solution

01

The two inequalities in \(A{\bf{x}} \le {\bf{b}}\)

The matrix inequalities \(A{\bf{x}} \le {\bf{b}}\) yield the following system of inequalities:

  1. \({{\mathop{\rm x}\nolimits} _1} + 2{{\mathop{\rm x}\nolimits} _2} \le 10\)
  2. \(3{{\mathop{\rm x}\nolimits} _1} + {{\mathop{\rm x}\nolimits} _2} \le 15\)
02

Determine the \({{\bf{x}}_1}\)-intercept and \({{\bf{x}}_2}\)-intercept of the two lines

The condition \({\mathop{\rm x}\nolimits} \ge 0\) places polytope \(P\) in the first quadrant of the plane. One vertex is \(\left( {0,0} \right)\).

The \({{\mathop{\rm x}\nolimits} _1}\)-intercepts \(\left( {{\mathop{\rm If}\nolimits} {\rm{ }}{{\mathop{\rm x}\nolimits} _2} = 0} \right)\) of the two lines are 10 and 5, so \(\left( {5,0} \right)\) is a vertex.

The \({{\mathop{\rm x}\nolimits} _2}\)-intercepts\(\left( {{\mathop{\rm If}\nolimits} {\rm{ }}{{\mathop{\rm x}\nolimits} _1} = 0} \right)\) of the two lines are 5 and 15, then \(\left( {0,5} \right)\) is a vertex.

03

Determine the intersection point corresponds to inequalities

The intersection of (a) is at \({{\mathop{\rm P}\nolimits} _{\mathop{\rm a}\nolimits} } = \left( {4,3} \right)\). Testing \({{\mathop{\rm P}\nolimits} _a}\) in (b) gives \(3\left( 4 \right) + 3 = 15\), so \({{\mathop{\rm P}\nolimits} _a}\) is in \({\mathop{\rm P}\nolimits} \).

04

Determine the minimal representation of the polytope

The four vertices of the polytope are \(\left( {0,0} \right),\left( {5,0} \right)\left( {4,3} \right),\,\,{\mathop{\rm and}\nolimits} \,\,\left( {0,5} \right)\).

Thus, the minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}5\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\3\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\5\end{array}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let A be the \({\bf{1}} \times {\bf{4}}\) matrix \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{3}}}&{\bf{4}}&{ - {\bf{2}}}\end{array}} \right)\) and let \(b = {\bf{5}}\). Let \(H = \left\{ {{\bf{x}}\,\,{\rm{in}}\,{\mathbb{R}^{\bf{4}}}:A{\bf{x}} = {\bf{b}}} \right\}\).

Question: 23. Let \({{\bf{v}}_1} = \left( \begin{array}{l}1\\1\end{array} \right)\), \({{\bf{v}}_2} = \left( \begin{array}{l}3\\0\end{array} \right)\), \({{\bf{v}}_3} = \left( \begin{array}{l}5\\3\end{array} \right)\) and \({\bf{p}} = \left( \begin{array}{l}4\\1\end{array} \right)\). Find a hyperplane \(f:d\) (in this case, a line) that strictly separates \({\bf{p}}\) from \({\rm{conv}}\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\).

Question: 19. Let \(S\) be an affine subset of \({\mathbb{R}^n}\) , suppose \(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\)is a linear transformation, and let \(f\left( S \right)\) denote the set of images \(\left\{ {f\left( {\rm{x}} \right):{\rm{x}} \in S} \right\}\). Prove that \(f\left( S \right)\)is an affine subset of \({\mathbb{R}^m}\).

Question: 15. Let \(A\) be an \({\rm{m}} \times {\rm{n}}\) matrix and, given \({\rm{b}}\) in \({\mathbb{R}^m}\), show that the set \(S\) of all solutions of \(A{\rm{x}} = {\rm{b}}\) is an affine subset of \({\mathbb{R}^n}\).

Explain why any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free