For the equation \({c_2}\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + {c_3}\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right) + {c_4}\left( {{{\bf{v}}_4} - {{\bf{v}}_1}} \right) = {{\bf{p}}_2} - {{\bf{v}}_1}\) augmented matrix:
\(\left( {\left. {\begin{aligned}{{}}{{{\bf{v}}_2} - {{\bf{v}}_1}}&{{{\bf{v}}_3} - {{\bf{v}}_1}}&{{{\bf{v}}_4} - {{\bf{v}}_1}}\end{aligned}} \right|\,\,{{\bf{p}}_2} - {{\bf{v}}_1}} \right) = \left( {\begin{aligned}{{}}1&2&2&1\\0&2&4&1\\{ - 3}&0&{ - 6}&{ - 2}\end{aligned}} \right)\)
Apply row operations:
\(\begin{aligned}{}M = \left( {\begin{aligned}{{}}1&2&2&1\\0&2&4&1\\0&6&0&1\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_3} \to {R_3} + 3{R_1}} \right\}\\ = \left( {\begin{aligned}{{}}1&2&2&1\\0&1&2&{\frac{1}{2}}\\0&0&{ - 12}&{ - 2}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{aligned}{l}{R_3} \to {R_3} - 3{R_2}\\{R_2} \to \frac{1}{2}{R_2}\end{aligned} \right\}\\ = \left( {\begin{aligned}{{}}1&2&2&1\\0&1&2&{\frac{1}{2}}\\0&0&1&{\frac{1}{6}}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_3} \to \frac{1}{{12}}{R_3}} \right\}\end{aligned}\)
So, by row reduced form, the values of scalars are shown below:
\({c_4} = \frac{1}{6}\)
And,
\(\begin{aligned}{}{c_3} + 2{c_4} = 1\\{c_3} + 2\left( {\frac{1}{6}} \right) = \frac{1}{2}\\{c_3} = \frac{1}{6}\end{aligned}\)
And,
\(\begin{aligned}{}{c_2} + 2{c_3} + 2{c_4} = \frac{1}{3}\\{c_2} + 2\left( {\frac{1}{6}} \right) + 2\left( {\frac{1}{6}} \right) = 1\\{c_2} = \frac{1}{3}\end{aligned}\)
So, the value of \({{\bf{p}}_1}\) can be calculated as,
\(\begin{aligned}{}\frac{1}{3}\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + \frac{1}{6}\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right) + \frac{1}{6}\left( {{{\bf{v}}_4} - {{\bf{v}}_1}} \right) = {{\bf{p}}_2} - {{\bf{v}}_1}\\{{\bf{p}}_2} = \frac{1}{3}{{\bf{v}}_1} + \frac{1}{3}{{\bf{v}}_2} + \frac{1}{6}{{\bf{v}}_3} + \frac{1}{6}{{\bf{v}}_4}\end{aligned}\)
As all the coefficients are positive, so\(\left( {\frac{1}{3} + \frac{1}{3} + \frac{1}{6} + \frac{1}{6} = 1} \right)\). Therefore,\({{\bf{p}}_2} \in {\rm{conv}}\,\,S\).
Therefore, \({{\bf{p}}_1} \notin {\rm{conv}}\,\,S\) and \({{\bf{p}}_2} \in {\rm{conv}}\,\,S\).