Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the points in Exercise 5 in section 8.1 which of \({{\bf{p}}_{\bf{1}}}\), \({{\bf{p}}_{\bf{2}}}\), and \({{\bf{p}}_{\bf{3}}}\) are in conv S?

Short Answer

Expert verified

Only \({{\bf{p}}_2}\) is in Conv S.

Step by step solution

01

Step 1:Find the projection of \({{\bf{p}}_{\bf{1}}}\), \({{\bf{p}}_{\bf{2}}}\), and \({{\bf{p}}_{\bf{3}}}\)

As S is an orthogonal set, the projection of \({{\bf{p}}_1}\) is as follows:

\({\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_1} = \frac{{{{\bf{p}}_1} \cdot {{\bf{b}}_1}}}{{{{\bf{b}}_1} \cdot {{\bf{b}}_1}}}{{\bf{b}}_1} + \frac{{{{\bf{p}}_1} \cdot {{\bf{b}}_2}}}{{{{\bf{b}}_2} \cdot {{\bf{b}}_2}}}{{\bf{b}}_2} + \frac{{{{\bf{p}}_1} \cdot {{\bf{b}}_3}}}{{{{\bf{b}}_3} \cdot {{\bf{b}}_3}}}{{\bf{b}}_3}\)

The projection of \({{\bf{p}}_{\bf{2}}}\) is as follows:

\({\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_2} = \frac{{{{\bf{p}}_2} \cdot {{\bf{b}}_1}}}{{{{\bf{b}}_1} \cdot {{\bf{b}}_1}}}{{\bf{b}}_1} + \frac{{{{\bf{p}}_2} \cdot {{\bf{b}}_2}}}{{{{\bf{b}}_2} \cdot {{\bf{b}}_2}}}{{\bf{b}}_2} + \frac{{{{\bf{p}}_2} \cdot {{\bf{b}}_3}}}{{{{\bf{b}}_3} \cdot {{\bf{b}}_3}}}{{\bf{b}}_3}\)

The projection of \({{\bf{p}}_3}\) is as follows:

\({\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_3} = \frac{{{{\bf{p}}_3} \cdot {{\bf{b}}_1}}}{{{{\bf{b}}_1} \cdot {{\bf{b}}_1}}}{{\bf{b}}_1} + \frac{{{{\bf{p}}_3} \cdot {{\bf{b}}_2}}}{{{{\bf{b}}_2} \cdot {{\bf{b}}_2}}}{{\bf{b}}_2} + \frac{{{{\bf{p}}_3} \cdot {{\bf{b}}_3}}}{{{{\bf{b}}_3} \cdot {{\bf{b}}_3}}}{{\bf{b}}_3}\)

Here \({{\bf{b}}_1}\), \({{\bf{b}}_2}\), and \({{\bf{b}}_3}\) are the element of orthogonal set S and\({{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\), \({{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\),and\({{\bf{b}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\).

02

Find the product in the projection of \({{\bf{p}}_{\bf{1}}}\)

The product for projection\({{\bf{p}}_{\bf{1}}}\) is as follows:

\(\begin{array}{c}{{\bf{p}}_{\bf{1}}} \cdot {{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}0\\{ - 19}\\{ - 5}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\\ = - 24\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{1}}} \cdot {{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\\ = 6\end{array}\)

And

\(\begin{array}{c}{{\bf{p}}_{\bf{1}}} \cdot {{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}0\\{ - 19}\\{ - 5}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\\ = 5\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{2}}} \cdot {{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\\ = 5\end{array}\)

And

\(\begin{array}{c}{{\bf{p}}_{\bf{1}}} \cdot {{\bf{b}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}0\\{ - 19}\\{ - 5}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\\ = 90\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{3}}} \cdot {{\bf{b}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\\ = 30\end{array}\)

03

Find the product in the projection of \({{\bf{p}}_{\bf{2}}}\)

The product for projection of \({{\bf{p}}_2}\) is as follows:

\(\begin{array}{c}{{\bf{p}}_{\bf{2}}} \cdot {{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}{1.5}\\{ - 1.3}\\{ - 0.5}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\\ = 1.2\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{1}}} \cdot {{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\\ = 6\end{array}\)

And

\(\begin{array}{c}{{\bf{p}}_{\bf{2}}} \cdot {{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{1.5}\\{ - 1.3}\\{ - 0.5}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\\ = 2.5\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{2}}} \cdot {{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\\ = 5\end{array}\)

And

\(\begin{array}{c}{{\bf{p}}_2} \cdot {{\bf{b}}_3} = \left[ {\begin{array}{*{20}{c}}{1.5}\\{ - 1.3}\\{ - 0.5}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\\ = 9.0\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{3}}} \cdot {{\bf{b}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\\ = 30\end{array}\)

04

Find the product in the projection of \({{\bf{p}}_{\bf{3}}}\)

The product for projection of \({{\bf{p}}_3}\) is as follows:

\(\begin{array}{c}{{\bf{p}}_3} \cdot {{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}5\\{ - 4}\\0\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\\ = 6\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{1}}} \cdot {{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\\ = 6\end{array}\)

And

\(\begin{array}{c}{{\bf{p}}_3} \cdot {{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}5\\{ - 4}\\0\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\\ = 5\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{2}}} \cdot {{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\\ = 5\end{array}\)

And

\(\begin{array}{c}{{\bf{p}}_3} \cdot {{\bf{b}}_3} = \left[ {\begin{array}{*{20}{c}}5\\{ - 4}\\0\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\\ = 30\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{3}}} \cdot {{\bf{b}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\\ = 30\end{array}\)

05

Substitute values in the equation of projections

The projection \({{\bf{p}}_1}\)is as follows:

\(\begin{array}{c}{\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_1} = \left( { - \frac{{24}}{6}} \right){{\bf{b}}_1} + \frac{{10}}{5}{{\bf{b}}_2} + \frac{{90}}{{30}}{{\bf{b}}_3}\\ = - 4{{\bf{b}}_1} + 2{{\bf{b}}_2} + 3{{\bf{b}}_3}\end{array}\)

The projection \({{\bf{p}}_2}\) is as follows:

\(\begin{array}{c}{\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_2} = \left( {\frac{{1.2}}{6}} \right){{\bf{b}}_1} + \left( {\frac{{2.5}}{5}} \right){{\bf{b}}_2} + \left( {\frac{9}{{30}}} \right){{\bf{b}}_3}\\ = 0.2{{\bf{b}}_1} + 0.5{{\bf{b}}_2} + 0.3{{\bf{b}}_3}\end{array}\)

The projection \({{\bf{p}}_3}\) is as follows:

\(\begin{array}{c}{\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_3} = \frac{6}{6}{{\bf{b}}_1} + \frac{5}{5}{{\bf{b}}_2} + \frac{{30}}{{30}}{{\bf{b}}_3}\\ = {{\bf{b}}_1} + {{\bf{b}}_2} + {{\bf{b}}_3}\end{array}\)

Following projections can be made from the projections:

  1. For \({{\bf{p}}_1}\), all coefficients are not positive, so \({{\bf{p}}_1} \notin {\rm{conv}}\,S\).
  2. For \({{\bf{p}}_2}\), all coefficients are positive but \(\left( {0.2 + 0.5 + 0.3 = 1} \right)\), so \({{\bf{p}}_1} \in {\rm{conv}}\,S\).
  3. For \({{\bf{p}}_3}\), all coefficients are positive but \(\left( {1 + 1 + 1 = 3 \ne 1} \right)\), so \({{\bf{p}}_1} \notin {\rm{conv}}\,S\).

Therefore, only \({{\bf{p}}_2}\) is in Conv S.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 21โ€“24, a, b, and c are noncollinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \) and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

21. Show that the area of\(\Delta {\bf{abc}}\)is\(det\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]/2\).

[Hint:Consult Sections 3.2 and 3.3, including the Exercises.]

Question: 16. Let \({\rm{v}} \in {\mathbb{R}^n}\)and let \(k \in \mathbb{R}\). Prove that \(S = \left\{ {{\rm{x}} \in {\mathbb{R}^n}:{\rm{x}} \cdot {\rm{v}} = k} \right\}\)is an affine subset of \({\mathbb{R}^n}\).

Question 3: Repeat Exercise 1 where \(m\) is the minimum value of f on \(S\) instead of the maximum value.

Let \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) be cubic Bรฉzier curves with control points \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}{{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\)and \(\left\{ {{{\bf{p}}_{\bf{3}}}{\bf{,}}{{\bf{p}}_{\bf{4}}}{\bf{,}}{{\bf{p}}_{\bf{5}}}{\bf{,}}{{\bf{p}}_{\bf{6}}}} \right\}\) respectively, so that \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) are joined at \({{\bf{p}}_3}\) . The following questions refer to the curve consisting of \({\bf{x}}\left( t \right)\) followed by \(y\left( t \right)\). For simplicity, assume that the curve is in \({\mathbb{R}^2}\).

a. What condition on the control points will guarantee that the curve has \({C^1}\) continuity at \({{\bf{p}}_3}\) ? Justify your answer.

b. What happens when \({\bf{x'}}\left( 1 \right)\) and \({\bf{y'}}\left( 1 \right)\) are both the zero vector?

Question: In Exercise 7, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{4}}\\{\bf{1}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{ - {\bf{2}}}\\{\bf{5}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free