Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question 3: Repeat Exercise 1 where \(m\) is the minimum value of f on \(S\) instead of the maximum value.

Short Answer

Expert verified
  1. \({{\mathop{\rm p}\nolimits} _3}\) is the point in \(S\) at \(m = - 3\).
  2. \(m = 1\)is the minimum value on the set \({\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _3}} \right\}\).
  3. \(m = - 3\) is the minimum value on the set \({\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2}} \right\}\).

Step by step solution

01

Repeat the given as in Exercise 1

Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\3\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right)\) in \({\mathbb{R}^2}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a. \(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 3{x_1} + {x_2}\)

02

The maximum and minimum is attained at an extreme point

Theorem 16states that let \(f\) be a linear functionaldefined on a nonempty compact convex set \(S\).

Then, there are extreme points \(\widehat {\mathop{\rm v}\nolimits} \) and \(\widehat {\mathop{\rm w}\nolimits} \) of \(S\) such that \(f\left( {\widehat {\mathop{\rm v}\nolimits} } \right) = \mathop {\max }\limits_{{\mathop{\rm v}\nolimits} \in S} f\left( {\mathop{\rm v}\nolimits} \right)\) and \(f\left( {\widehat {\mathop{\rm w}\nolimits} } \right) = \mathop {\min }\limits_{{\mathop{\rm v}\nolimits} \in S} f\left( {\mathop{\rm v}\nolimits} \right)\).

03

Determine the minimum value \(m\) of \(f\)

According to theorem 16, the minimum value is attained at one of the extreme points of \(S\).

Evaluate \(f\) at the extreme point and select the smallest value to find \(m\) as shown below:

a. \({f_1}\left( {{{\mathop{\rm p}\nolimits} _1}} \right) = 1\), \({f_1}\left( {{{\mathop{\rm p}\nolimits} _2}} \right) = - 1\), \({f_1}\left( {{{\mathop{\rm p}\nolimits} _3}} \right) = - 3\), therefore, \({m_1} = - 3\). Graph the line \({f_1}\left( {{x_1},{x_2}} \right) = {m_1}\) which means that \({x_1} - {x_2} = - 3\), and \({\mathop{\rm x}\nolimits} = {{\mathop{\rm p}\nolimits} _3}\) is the only point in \(S\) at which \({f_1}\left( {\mathop{\rm x}\nolimits} \right) = - 3\).

b. \({f_2}\left( {{{\mathop{\rm p}\nolimits} _1}} \right) = 1\), \({f_2}\left( {{{\mathop{\rm p}\nolimits} _2}} \right) = 5\), \({f_2}\left( {{{\mathop{\rm p}\nolimits} _3}} \right) = 1\), therefore, \({m_2} = 1\). Graph the line \({f_2}\left( {{x_1},{x_2}} \right) = {m_2}\) which means that \({x_1} + {x_2} = 1\), and \({\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _3}} \right\}\) is the set in \(S\) at which \({f_2}\left( {\mathop{\rm x}\nolimits} \right) = 1\).


c. \({f_3}\left( {{{\mathop{\rm p}\nolimits} _1}} \right) = - 3\), \({f_3}\left( {{{\mathop{\rm p}\nolimits} _2}} \right) = - 3\), \({f_3}\left( {{{\mathop{\rm p}\nolimits} _3}} \right) = 5\), therefore, \({m_3} = - 3\). Graph the line \({f_3}\left( {{x_1},{x_2}} \right) = {m_3}\) which means that \( - 3{x_1} + {x_2} = - 3\), and \({\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2}} \right\}\) is the set in \(S\) at which \({f_3}\left( {\mathop{\rm x}\nolimits} \right) = - 3\).


Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 12. In Exercises 11 and 12, mark each statement True or False. Justify each answer.

a. If \(S = \left\{ {\bf{x}} \right\}\), then \({\rm{aff}}\,S\) is the empty set.

b. A set is affine if and only if it contains its affine hull.

c. A flat of dimension 1 is called a line.

d. A flat of dimension 2 is called a hyper plane.

e. A flat through the origin is a subspace.

The parametric vector form of a B-spline curve was defined in the Practice Problems as

\({\bf{x}}\left( t \right) = \frac{1}{6}\left[ \begin{array}{l}{\left( {1 - t} \right)^3}{{\bf{p}}_o} + \left( {3t{{\left( {1 - t} \right)}^2} - 3t + 4} \right){{\bf{p}}_1}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left( {3{t^2}\left( {1 - t} \right) + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}\end{array} \right]\;\), for \(0 \le t \le 1\) where \({{\bf{p}}_o}\) , \({{\bf{p}}_1}\), \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\) are the control points.

a. Show that for \(0 \le t \le 1\), \({\bf{x}}\left( t \right)\) is in the convex hull of the control points.

b. Suppose that a B-spline curve \({\bf{x}}\left( t \right)\)is translated to \({\bf{x}}\left( t \right) + {\bf{b}}\) (as in Exercise 1). Show that this new curve is again a B-spline.


Prove Theorem 6 for an affinely independent set\(S = \left\{ {{v_1},...,{v_k}} \right\}\)in\({\mathbb{R}^{\bf{n}}}\). [Hint:One method is to mimic the proof of Theorem 7 in Section 4.4.]

Question: Suppose that the solutions of an equation \(A{\bf{x}} = {\bf{b}}\) are all of the form \({\bf{x}} = {x_{\bf{3}}}{\bf{u}} + {\bf{p}}\), where \({\bf{u}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right)\) and \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{\bf{4}}\end{array}} \right)\). Find points \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) such that the solution set of \(A{\bf{x}} = {\bf{b}}\) is \({\bf{aff}}\left\{ {{{\bf{v}}_{\bf{1}}},\,{{\bf{v}}_{\bf{2}}}} \right\}\).

In Exercises 21โ€“24, a, b, and c are non-collinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \) and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

22. Let p be a point on the line through a and b. Show that\(det\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{p}} }\end{array}} \right] = 0\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free