Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

3.\(\left( {\begin{aligned}{{}}1\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 2}\\{ - 4}\\8\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\{ - 1}\\{11}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{15}\\{ - 9}\end{aligned}} \right)\)

Short Answer

Expert verified

The set of points are affinely independent.

Step by step solution

01

Condition for affinely dependent

The set is said to be affinely dependent, if the set \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},...,{{\bf{v}}_p}} \right\}\) in the dimension\({\mathbb{R}^n}\) exists such that \({c_1},{c_2},...,{c_p}\) not all zero, and the sum must be zero \({c_1} + {c_2} + ... + {c_p} = 0\), and \({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + ... + {c_p}{{\bf{v}}_p} = 0\).

02

Compute \({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}\), \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}\)

Let \({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}1\\2\\{ - 1}\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{aligned}{{}}{ - 2}\\{ - 4}\\8\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{aligned}{{}}2\\{ - 1}\\{11}\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _4} = \left( {\begin{aligned}{{}}0\\{15}\\9\end{aligned}} \right)\).

Compute \({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}\), \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}\), and \({{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}\) as shown below

\({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}{ - 3}\\{ - 6}\\9\end{aligned}} \right)\), \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}1\\{ - 3}\\{12}\end{aligned}} \right)\), \({{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}{ - 1}\\{13}\\{ - 8}\end{aligned}} \right)\)

Write the augmented matrix as shown below:

\(\left( {\begin{aligned}{{}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}&{{{\bf{v}}_3}}&{{{\bf{v}}_4}}\end{aligned}} \right) \sim \left( {\begin{aligned}{{}}1&{ - 2}&2&0\\2&{ - 4}&{ - 1}&{15}\\{ - 1}&8&{11}&9\end{aligned}} \right)\)

03

Apply row operation

At row 2, multiply row 1 by 2 and subtract it from row 2.

\( \sim \left( {\begin{aligned}{{}}1&{ - 2}&2&0\\0&0&{ - 5}&{15}\\{ - 1}&8&{11}&{ - 9}\end{aligned}} \right)\)

At row 3, add row 1 and row 3

\( \sim \left( {\begin{aligned}{{}}1&{ - 2}&2&0\\0&0&{ - 5}&{15}\\0&6&{13}&{ - 9}\end{aligned}} \right)\)

Interchange row 2 and row 3

\( \sim \left( {\begin{aligned}{{}}1&{ - 2}&2&0\\0&6&{13}&{ - 9}\\0&0&{ - 5}&{15}\end{aligned}} \right)\)

At row 2, multiply row 2 by \(\frac{1}{6}\)

\( \sim \left( {\begin{aligned}{{}}1&{ - 2}&2&0\\0&6&{\frac{{13}}{6}}&{ - \frac{3}{2}}\\0&0&{ - 5}&{15}\end{aligned}} \right)\)

At row 1, multiply row 2 by 2 and add it to row 1

\( \sim \left( {\begin{aligned}{{}}1&0&{\frac{{19}}{3}}&{ - 3}\\0&6&{\frac{{13}}{6}}&{ - \frac{3}{2}}\\0&0&{ - 5}&{15}\end{aligned}} \right)\)

At row 3, multiply row 3 by \(\frac{1}{{ - 5}}\)

\( \sim \left( {\begin{aligned}{{}}1&0&{\frac{{19}}{3}}&{ - 3}\\0&6&{\frac{{13}}{6}}&{ - \frac{3}{2}}\\0&0&1&{ - 3}\end{aligned}} \right)\)

At row 1, multiply row 3 by \(\frac{{19}}{3}\) and subtract it from row 1. At row 2, multiply row 3 by \(\frac{{13}}{6}\) and remove it from row 2

\( \sim \left( {\begin{aligned}{{}}1&0&0&{16}\\0&1&0&5\\0&0&1&{ - 3}\end{aligned}} \right)\)

The columns are linearly independent because every column is a pivot column.

The solution of the matrix is \({{\mathop{\rm x}\nolimits} _1} = 16,{{\mathop{\rm x}\nolimits} _2} = 5,{{\mathop{\rm x}\nolimits} _3} = - 3\).

04

Determine whether the set of points is affinely dependent

Theorem 5states that an indexed set \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) in \({\mathbb{R}^n}\), with \(p \ge 2\), the following statement is equivalent. This means that either all the statements are true or all the statements are false.

  1. The set \(S\) isaffinely dependent.
  2. Each of the points in \(S\)is an affine combination of the other points in \(S\).
  3. In \({\mathbb{R}^n}\), the set \(\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _1}} \right\}\)is linearly dependent.
  4. The set \(\left\{ {{{\bar v}_1},...,{{\bar v}_p}} \right\}\) of homogeneous forms in \({\mathbb{R}^{n + 1}}\) is linearly dependent.

If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) are points, then the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is a basis for \({\mathbb{R}^3}\), and\({{\mathop{\rm v}\nolimits} _4} = 16{{\mathop{\rm v}\nolimits} _1} + 5{{\mathop{\rm v}\nolimits} _2} - 3{{\mathop{\rm v}\nolimits} _3}\). However, the weights in the linear combination do not sum to 1. The set \(S\) is affinely independent.

Thus, the set of points are affinely independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let\({v_1} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{4}}\end{array}} \right]\),\({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{0}}\end{array}} \right]\), and let\(S = \left\{ {{v_1},{v_2},{v_3}} \right\}\).

  1. Show that the set is affinely independent.
  2. Find the barycentric coordinates of\({p_1} = \left[ {\begin{array}{*{20}{c}}2\\3\end{array}} \right]\),\({p_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\end{array}} \right]\),\({p_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\{\bf{1}}\end{array}} \right]\),\({p_{\bf{4}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{1}}}\end{array}} \right]\), and\({p_{\bf{5}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{1}}\end{array}} \right]\), with respect to S.
  3. Let\(T\)be the triangle with vertices\({v_1}\),\({v_{\bf{2}}}\), and\({v_{\bf{3}}}\). When the sides of\(T\)are extended, the lines divide\({\mathbb{R}^{\bf{2}}}\)into seven regions. See Figure 8. Note the signs of the barycentric coordinates of the points in each region. For example,\({{\bf{p}}_{\bf{5}}}\)is inside the triangle\(T\)and all its barycentric coordinates are positive. Point\({{\bf{p}}_{\bf{1}}}\)has coordinates\(\left( { - , + , + } \right)\). Its third coordinate is positive because\({{\bf{p}}_{\bf{1}}}\)is on the\({{\bf{v}}_{\bf{3}}}\)side of the line through\({{\bf{v}}_{\bf{1}}}\)and\({{\bf{v}}_{\bf{2}}}\). Its first coordinate is negative because\({{\bf{p}}_{\bf{1}}}\)is opposite the\({{\bf{v}}_{\bf{1}}}\)side of the line through\({{\bf{v}}_{\bf{2}}}\)and\({{\bf{v}}_{\bf{3}}}\). Point\({{\bf{p}}_{\bf{2}}}\)is on the\({{\bf{v}}_{\bf{2}}}{{\bf{v}}_{\bf{3}}}\)edge of\(T\). Its coordinates are\(\left( {0, + , + } \right)\). Without calculating the actual values, determine the signs of the barycentric coordinates of points\({{\bf{p}}_{\bf{6}}}\),\({{\bf{p}}_{\bf{7}}}\), and\({{\bf{p}}_{\bf{8}}}\)as shown in Figure 8.

Question: 14. Show that if \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a basis for \({\mathbb{R}^3}\), then aff \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is the plane through \({{\rm{v}}_{\rm{1}}}{\rm{, }}{{\rm{v}}_{\rm{2}}}\) and \({{\rm{v}}_{\rm{3}}}\).

In Exercises 21-26, prove the given statement about subsets A and B of \({\mathbb{R}^n}\), or provide the required example in \({\mathbb{R}^2}\). A proof for an exercise may use results from earlier exercises (as well as theorems already available in the text).

25. \({\mathop{\rm aff}\nolimits} \left( {A \cap B} \right) \subset \left( {{\mathop{\rm aff}\nolimits} A \cap {\mathop{\rm aff}\nolimits} B} \right)\)

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

9.

a. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1} - {{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _2},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _2}} \right\}\) is linearly dependent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent. (Read this carefully.)

b. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set of homogeneous forms \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent.

c. A finite set of points \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is affinely dependent if there exist real numbers \({c_1},...,{c_k}\) , not all zero, such that \({c_1} + ... + {c_k} = 1\) and \({c_1}{{\mathop{\rm v}\nolimits} _1} + ... + {c_k}{{\mathop{\rm v}\nolimits} _k} = 0\).

d. If \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely independent set in \({\mathbb{R}^n}\) and if p in \({\mathbb{R}^n}\) has a negative barycentric coordinate determined by S, then p is not in \({\mathop{\rm aff}\nolimits} S\).

e.

If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},a,\) and \(b\) are in \({\mathbb{R}^3}\) and if ray \({\mathop{\rm a}\nolimits} + t{\mathop{\rm b}\nolimits} \) for \(t \ge 0\) intersects the triangle with vertices \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},\) and \({{\mathop{\rm v}\nolimits} _3}\) then the barycentric coordinates of the intersection points are all nonnegative.

Suppose \({\bf{y}}\) is orthogonal to \({\bf{u}}\) and \({\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to every \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\). (Hint: An arbitrary \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\) has the form \({\bf{w}} = {c_1}{\bf{u}} + {c_2}{\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to such a vector \({\bf{w}}\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free