Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice problem 2.) If so, construct an affine dependence relation for the points.

2.\(\left( {\begin{aligned}{{}}2\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}5\\4\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 3}\\{ - 2}\end{aligned}} \right)\)

Short Answer

Expert verified

The set of points is not affinely dependent.

Step by step solution

01

Condition for the affinely dependent

The set is said to be affinely dependent if the set \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},...,{{\bf{v}}_p}} \right\}\) in the dimension \({\mathbb{R}^n}\) exists such that \({c_1},{c_2},...,{c_p}\) not all zero, and the sum must be zero \({c_1} + {c_2} + ... + {c_p} = 0\), and \({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + ... + {c_p}{{\bf{v}}_p} = 0\)

02

Compute \({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}\)

Let \({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}2\\1\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{aligned}{{}}5\\4\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{aligned}{{}}{ - 3}\\{ - 2}\end{aligned}} \right)\).

Compute the translated points\({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}\) as shown below

\({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}3\\3\end{aligned}} \right)\), \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}{ - 5}\\{ - 3}\end{aligned}} \right)\)

It is observed that two points are not multiples.

03

Determine whether the set of points is affinely dependent

Theorem 5states that an indexed set \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) in \({\mathbb{R}^n}\), with \(p \ge 2\), the following statement is equivalent. This means that either all the statements are true or all the statements are false.

  1. The set \(S\) isaffinely dependent.
  2. Each of the points in \(S\)is an affine combination of the other points in \(S\).
  3. In \({\mathbb{R}^n}\), the set \(\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _1}} \right\}\)is linearly dependent.
  4. The set \(\left\{ {{{\bar v}_1},...,{{\bar v}_p}} \right\}\) of homogeneous forms in \({\mathbb{R}^{n + 1}}\) is linearly dependent.

Since two points are not multiples, thus form a linearly independent set \(S'\).So, all statements in theorem 5 are false and \(S\) are affinely independent.

Thus, the set of points is not affinely dependent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free