Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:28. Give an example of a compact set\(A\)and a closed set\(B\)in\({\mathbb{R}^2}\)such that\(\left( {{\rm{conv}}\,A} \right) \cap \left( {{\rm{conv}}\,B} \right) = \emptyset \)but\(A\)and\(B\)cannot be strictly separated by a hyperplane.

Short Answer

Expert verified

The sets are \(A = \left\{ {\left( {x,y} \right):\left| x \right| < 1,\,\,y = 0} \right\}\), and \(B = \left\{ {\left( {x,y} \right):{x^2}{y^2} = 1,\,\,y > 0} \right\}\).

Step by step solution

01

Assume set \(A\)and \(B\) as per required condition

One of the possible sets is \(B = \left\{ {\left( {x,y} \right):{x^2}{y^2} = 1,\,\,y > 0} \right\}\) and \(A = \left\{ {\left( {x,y} \right):\left| x \right| < 1,\,\,y = 0} \right\}\). This set is in \({\mathbb{R}^2}\).

02

Check whether \(\left( {{\rm{conv}}\,A} \right) \cap \left( {{\rm{conv}}\,B} \right) = \emptyset \)

The convex combination of both sets is null as the set\(B\)opens only in half-plane, whereas the set\(A\)lies within\( - 1 < x < 1\).

Thus, satisfy the condition\(\left( {{\rm{conv}}\,A} \right) \cap \left( {{\rm{conv}}\,B} \right) = \emptyset \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

6.\(\left( {\begin{aligned}{{}}1\\3\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{ - 1}\\{ - 2}\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\5\\2\end{aligned}} \right),\left( {\begin{aligned}{{}}3\\5\\0\end{aligned}} \right)\)

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{\bf{4}}\\{ - {\bf{2}}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{ - {\bf{2}}}\\{\bf{6}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{{\bf{17}}}\\{\bf{1}}\\{\bf{5}}\end{aligned}} \right)\)

Explain why any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.

Repeat Exercise 25 with\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\{\bf{2}}\\{ - {\bf{4}}}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{8}}\\{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{{\bf{10}}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{8}}\end{array}} \right]\), and \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{.{\bf{9}}}\\{{\bf{2}}.{\bf{0}}}\\{ - {\bf{3}}.{\bf{7}}}\end{array}} \right]\).

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

15. Sometimes only one-half of a Bezier curve needs further subdividing. For example, subdivision of the “left” side is accomplished with parts (a) and (c) of Exercise 13 and equation (8). When both halves of the curve \({\mathop{\rm x}\nolimits} \left( t \right)\) are divided, it is possible to organize calculations efficiently to calculate both left and right control points concurrently, without using equation (8) directly.

a. Show that the tangent vector \(y'\left( 1 \right)\) and \(z'\left( 0 \right)\) are equal.

b. Use part (a) to show that \({{\mathop{\rm q}\nolimits} _3}\) (which equals \({{\mathop{\rm r}\nolimits} _0}\)) is the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _2}\) to \({{\mathop{\rm r}\nolimits} _1}\).

c. Using part (b) and the results of Exercises 13 and 14, write an algorithm that computes the control points for both \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) in an efficient manner. The only operations needed are sums and division by 2.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free