Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: 26. Let \({\rm{q}} = \left( \begin{array}{l}2\\3\end{array} \right)\), \({\rm{p}} = \left( \begin{array}{l}6\\1\end{array} \right)\). Find a hyperplane \(\left( {f:d} \right)\) that strictly separates \(B\left( {{\rm{q}},3} \right)\) and \(B\left( {{\rm{p}},1} \right)\).

Short Answer

Expert verified

The equation of the hyperplane is \(\left\{ {\left( \begin{array}{l}x\\y\end{array} \right):4x - 2y = 17} \right\}\).

Step by step solution

01

Assume the vector \(n\) 

The line segment joins \(p\) and \(q\) is perpendicular to the separating hyperplane. Thus, \(n = \left( {p - q} \right)\) is equal to \(\left( \begin{array}{l}4\\ - 2\end{array} \right)\).

02

Find the vector \(x\)

The distance between\(p\)and \(q\)is\(\sqrt {{4^2} + {{\left( { - 2} \right)}^2}} = \sqrt {20} \), which is greater than the overall radii of the balls.

The centre of the larger ball is\(q\). The point situated at the\(\frac{3}{4}\)of the distance between p and q is 3 units far from q and 1 unit far from p.

Thus, the corresponding point is shown below:

\(\begin{array}{c}x = .75p + .25q\\ = .75\left( \begin{array}{l}6\\1\end{array} \right) + .25\left( \begin{array}{l}2\\3\end{array} \right)\\ = \left( \begin{array}{c}5.0\\1.5\end{array} \right)\end{array}\)

03

Find the required hyperplane

The dot product n.x is shown below:

\begin{gathered} nx = 4 \cdot 5 - 2 \cdot \left( {1.5} \right) \\ = 20 - 3 \\ = 17 \\ \end{gathered}

So, the required hyperplane is \(\left\{ {\left( \begin{array}{l}x\\y\end{array} \right):4x - 2y = 17} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercise 6, determine whether or not each set is compact and whether or not it is convex.

6. Use the sets from Exercise 4.

In Exercises 21–24, a, b, and c are noncollinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \)and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

24. Take q on the line segment from b to c and consider the line through q and a, which may be written as\(p = \left( {1 - x} \right)q + xa\)for all real x. Show that, for each x,\(det\left[ {\begin{array}{*{20}{c}}{\widetilde p}&{\widetilde b}&{\widetilde c}\end{array}} \right] = x \cdot det\left[ {\begin{array}{*{20}{c}}{\widetilde a}&{\widetilde b}&{\widetilde c}\end{array}} \right]\). From this and earlier work, conclude that the parameter x is the first barycentric coordinate of p. However, by construction, the parameter x also determines the relative distance between p and q along the segment from q to a. (When x = 1, p = a.) When this fact is applied to Example 5, it shows that the colors at vertex a and the point q are smoothly interpolated as p moves along the line between a and q.

Question: 29. Prove that the open ball \(B\left( {{\rm{p}},\delta } \right) = \left\{ {{\rm{x:}}\left\| {{\rm{x - p}}} \right\| < \delta } \right\}\)is a convex set. (Hint: Use the Triangle Inequality).

Question: 17. Choose a set \(S\) of three points such that aff \(S\) is the plane in \({\mathbb{R}^3}\) whose equation is \({x_3} = 5\). Justify your work.

In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{aligned}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{aligned}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each of the given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{8}}\\{\bf{4}}\end{aligned}} \right)\)

b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{6}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right)\)

c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{ - {\bf{1}}}\\{ - {\bf{5}}}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free