Chapter 8: Q26E (page 437)
Find an example in \({\mathbb{R}^2}\) to show that equality need not hold in the statement of Exercise 25.
Short Answer
It is proved that equality does not hold.
Chapter 8: Q26E (page 437)
Find an example in \({\mathbb{R}^2}\) to show that equality need not hold in the statement of Exercise 25.
It is proved that equality does not hold.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 21–24, a, b, and c are non-collinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \) and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.
22. Let p be a point on the line through a and b. Show that\(det\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{p}} }\end{array}} \right] = 0\).
Let\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\3\\{ - 6}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{7}}\\3\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{9}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{9}}\end{array}} \right]\), \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{1.4}\\{{\bf{1}}.{\bf{5}}}\\{ - {\bf{3}}.{\bf{1}}}\end{array}} \right]\), and \({\bf{x}}\left( t \right) = {\bf{a}} + t{\bf{b}}\)for \(t \ge {\bf{0}}\).Find the point where the ray\({\bf{x}}\left( t \right)\)intersects the plane that contains the triangle with vertices\({v_1}\),\({v_{\bf{2}}}\), and\({v_{\bf{3}}}\). Is this point inside the triangle?
Question: Let \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\), \({\bf{n}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{5}}\\{ - {\bf{1}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{1}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{0}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{4}}\\{\bf{0}}\\{\bf{4}}\end{array}} \right)\), and let H be the hyperplane in\({\mathbb{R}^{\bf{4}}}\) with normal n and passing through p. Which of the points \({{\bf{v}}_{\bf{1}}}\), \({{\bf{v}}_{\bf{2}}}\), and \({{\bf{v}}_{\bf{3}}}\) are on the same side of H as the origin, and which are not?
Question: 25. Let \(p = \left( \begin{array}{l}1\\1\end{array} \right)\). Find a hyperplane \(\left( {f:d} \right)\) that strictly separates \(B\left( {0,3} \right)\) and \(B\left( {p,1} \right)\). (Hint: After finding \(f\), show that the point \(v = \left( {1 - .75} \right)0 + .75p\) is neither in \(B\left( {0,3} \right)\) nor in \(B\left( {p,1} \right)\)).
In Exercises 21-26, prove the given statement about subsets A and B of \({\mathbb{R}^n}\), or provide the required example in \({\mathbb{R}^2}\). A proof for an exercise may use results from earlier exercises (as well as theorems already available in the text).
21. If \(A \subset B\), then B is affine, then \({\mathop{\rm aff}\nolimits} A \subset B\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.