Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: 24. Repeat Exercise 23 for \({v_1} = \left( \begin{array}{l}1\\2\end{array} \right)\), \({v_2} = \left( \begin{array}{l}5\\1\end{array} \right)\), \({v_3} = \left( \begin{array}{l}4\\4\end{array} \right)\) and \(p = \left( \begin{array}{l}2\\3\end{array} \right)\).

Short Answer

Expert verified

The linear functional is \(f\left( {{x_1},{x_2}} \right) = - 2{x_1} + 3{x_2}\) and \(4 < d < 5\).

Step by step solution

01

Find the closest side to the vector p

The vector \(p = \left( \begin{array}{l}2\\3\end{array} \right)\) , then triangle formed by the vectors \({v_1},{v_2},{v_3}\) has its closest side to \(p\) as \(\overline {{v_1}{v_3}} \) . It is shown below:

\(\begin{array}{c}\overline {{{\bf{v}}_1}{{\bf{v}}_3}} = \left( {\begin{array}{*{20}{c}}{4 - 1}\\{4 - 2}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}3\\2\end{array}} \right)\end{array}\)

The vector orthogonal to another vector is shown below:

\(\begin{array}{c}\overline {{{\bf{v}}_2}{{\bf{v}}_3}} \cdot {\bf{n}} = 0\\\left( {\begin{array}{*{20}{c}}3\\2\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}{{n_1}}\\{{n_2}}\end{array}} \right) = 0\\3{n_1} + 2{n_2} = 0\end{array}\)

02

Find an orthogonal vector

Many orthogonal vectors are on the closest side \(\overline {{v_1}{v_2}} \). One of them is \(n = \left( {\,\begin{array}{*{20}{c}}{ - 2}\\3\end{array}} \right)\).

03

Find the required hyperplane

Now the required hyperplane becomes \(f\left( {{x_1},{x_2}} \right) = - 2{x_1} + 3{x_2}\). For this hyperplane, \(f\left( p \right) = 5\) and \(f\left( {{v_1}} \right) = f\left( {{v_2}} \right) = 5\) .

So, its range of \(d\) is \(4 < d < 5\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({\bf{x}}\left( t \right)\) be a cubic Bézier curve determined by points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\), \({{\bf{p}}_2}\), and \({{\bf{p}}_3}\).

a. Compute the tangent vector \({\bf{x}}'\left( t \right)\). Determine how \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points, and give geometric descriptions of the directions of these tangent vectors. Is it possible to have \({\bf{x}}'\left( 1 \right) = 0\)?

b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_1}\) as the origin of the coordinate system.]

Suppose \({\bf{y}}\) is orthogonal to \({\bf{u}}\) and \({\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to every \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\). (Hint: An arbitrary \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\) has the form \({\bf{w}} = {c_1}{\bf{u}} + {c_2}{\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to such a vector \({\bf{w}}\).)

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

1.\(\left( {\begin{aligned}{{}}3\\{ - 3}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\6\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\0\end{aligned}} \right)\)

Let\(\left\{ {{p_1},{p_2},{p_3}} \right\}\)be an affinely dependent set of points in\({\mathbb{R}^{\bf{n}}}\)and let\(f:{\mathbb{R}^{\bf{n}}} \to {\mathbb{R}^{\bf{m}}}\)be a linear transformation. Show that\(\left\{ {f\left( {{{\bf{p}}_1}} \right),f\left( {{{\bf{p}}_2}} \right),f\left( {{{\bf{p}}_3}} \right)} \right\}\)is affinely dependent in\({\mathbb{R}^{\bf{m}}}\).

Question: In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{array}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{array}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each is given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{ - {\bf{19}}}\\{\bf{5}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{{\bf{1}}.{\bf{5}}}\\{ - {\bf{1}}.{\bf{3}}}\\{ - .{\bf{5}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{4}}}\\{\bf{0}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free