Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Given control points \({{\rm{p}}_{\rm{o}}}\) , \({{\rm{p}}_{\rm{1}}}\) , \({{\rm{p}}_{\rm{2}}}\) and \({{\rm{p}}_{\rm{3}}}\) in \({\mathbb{R}^n}\) , let \({g_1}\left( t \right)\)for \(0 \le t \le 1\) be the quadratic Bézier curve from Exercise 23 determined by \({{\rm{p}}_{\rm{o}}}\) , \({{\rm{p}}_{\rm{1}}}\) , and \({{\rm{p}}_{\rm{2}}}\), and let \({g_2}\left( t \right)\)be defined similarly for \({{\rm{p}}_{\rm{1}}}\) , \({{\rm{p}}_{\rm{2}}}\) and \({{\rm{p}}_{\rm{3}}}\). For \(0 \le t \le 1\), define \(h\left( t \right) = \left( {1 - t} \right){g_1}\left( t \right) + t{g_2}\left( t \right)\). Show that the graph of \(h\left( t \right)\)lies in the convex hull of the four control points. This curve is called a cubic Bézier curve, and its definition here is one step in an algorithm for constructing Bézier curves (discussed later in Section 8.6). A Bézier curve of degree \(k\) is determined by \(k + 1\) control points, and its graph lies in the convex hull of these control points.

Short Answer

Expert verified

\({\bf{h}}\left( t \right) = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\bf{p}}_{\bf{o}}} + \left( {3t - 6{t^2} + 3{t^3}} \right){{\bf{p}}_{\bf{1}}} + \left( {3{t^2} - 3{t^3}} \right){{\bf{p}}_{\bf{2}}} + {t^3}{{\bf{p}}_{\bf{3}}}\)

It is shown that \({\bf{h}}\left( t \right)\)is the convex combination of \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}\,{{\bf{p}}_{\bf{1}}}{\bf{,}}\,{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\).

Step by step solution

01

Use the definition of affine hull

Assume that \({{\bf{p}}_{\bf{o}}}{\bf{,}}\,{{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}} \in {{\bf{g}}_{\bf{o}}}\left( t \right)\) and \({{\bf{p}}_{\bf{1}}}{\bf{,}}\,{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}} \in {{\bf{g}}_{\bf{1}}}\left( t \right)\).

The affine hull of distinct points \({v_1}\) and \({v_2}\) is \(y = \left( {1 - t} \right){v_1} + t{v_2}\).

Similarly, the affine hull of \({{\bf{g}}_{\bf{o}}}\left( t \right)\)and \({{\bf{g}}_{\bf{1}}}\left( t \right)\)is \({\bf{h}}\left( t \right) = \left( {1 - t} \right){{\bf{g}}_{\bf{o}}}\left( t \right) + t{{\bf{g}}_{\bf{1}}}\left( t \right)\).

02

 Apply the affine hull for \({g_o}\left( t \right)\), and\({g_1}\left( t \right)\)

\(\begin{aligned}{}{\bf{h}}\left( t \right) = \left( {1 - t} \right)\left( {{{\left( {1 - t} \right)}^2}{{\bf{p}}_{\bf{o}}} + 2t\left( {1 - t} \right){p_1} + {t^2}{p_2}} \right) + t\left( {{{\left( {1 - t} \right)}^2}{{\bf{p}}_{\bf{1}}} + 2t\left( {1 - t} \right){{\bf{p}}_{\bf{2}}} + {t^2}{{\bf{p}}_{\bf{3}}}} \right)\\ = {\left( {1 - t} \right)^3}{{\bf{p}}_{\bf{o}}} + 2t\left( {1 - 2t + {t^2}} \right){{\bf{p}}_{\bf{1}}} + \left( {{t^2} - {t^3}} \right){{\bf{p}}_{\bf{2}}} + t\left( {1 - 2t + {t^2}} \right){{\bf{p}}_{\bf{1}}} + 2{t^2}\left( {1 - t} \right){{\bf{p}}_{\bf{2}}} + {t^3}{{\bf{p}}_{\bf{3}}}\\ = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\bf{p}}_{\bf{o}}} + \left( {2t - 4{t^2} + 2{t^3}} \right){{\bf{p}}_{\bf{1}}} + \left( {{t^2} - {t^3}} \right){{\bf{p}}_{\bf{2}}} + \left( {t - 2{t^2} + {t^3}} \right){{\bf{p}}_{\bf{1}}}\\ + \left( {2{t^2} - 2{t^3}} \right){{\bf{p}}_{\bf{2}}} + {t^3}{{\bf{p}}_{\bf{3}}}\\ = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\bf{p}}_{\bf{o}}} + \left( {3t - 6{t^2} + 3{t^3}} \right){{\bf{p}}_{\bf{1}}} + \left( {3{t^2} - 3{t^3}} \right){p_2} + {t^3}{{\bf{p}}_{\bf{3}}}\end{aligned}\)

03

Use the concept that weights in linear combination sum to 1

A point \(y\) in\({\mathbb{R}^n}\) is an affine combination of \({v_1},.......,{v_p}\)in \({\mathbb{R}^n}\), if \(\overline y = {c_1}{\overline v _1} + ...... + {c_p}{\overline v _p}\) such that \({c_1} + ...... + {c_p} = 1\).

So, the sum of the weight of \(h\left( t \right)\) should be 1; that is, \(\left( {1 - 3t + 3{t^2} - {t^3}} \right) + \left( {3t - 6{t^2} + 3{t^3}} \right) + \left( {3{t^2} - 3{t^3}} \right) + {t^3} = 1\).

04

Find the range of weight when \(0 \le t \le 1\).

The weight sum is \(\left( {1 - 3t + 3{t^2} - {t^3}} \right) + \left( {3t - 6{t^2} + 3{t^3}} \right) + \left( {3{t^2} - 3{t^3}} \right) + {t^3} = 1\). This sum also varies between 0 and 1 if \(0 \le t \le 1\).

This implies, it is convex combination of \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}\,{{\bf{p}}_{\bf{1}}}{\bf{,}}\,{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 25. Let \(p = \left( \begin{array}{l}1\\1\end{array} \right)\). Find a hyperplane \(\left( {f:d} \right)\) that strictly separates \(B\left( {0,3} \right)\) and \(B\left( {p,1} \right)\). (Hint: After finding \(f\), show that the point \(v = \left( {1 - .75} \right)0 + .75p\) is neither in \(B\left( {0,3} \right)\) nor in \(B\left( {p,1} \right)\)).

Question: In Exercise 3, determine whether each set is open or closed or neither open nor closed.

3. a. \(\left\{ {\left( {x,y} \right):y > {\bf{0}}} \right\}\)

b. \(\left\{ {\left( {x,y} \right):x = {\bf{2}}\,\,\,and\,\,{\bf{1}} \le y \le {\bf{3}}} \right\}\)

c. \(\left\{ {\left( {x,y} \right):x = {\bf{2}}\,\,\,and\,\,{\bf{1}} < y < {\bf{3}}} \right\}\)

d. \(\left\{ {\left( {x,y} \right):xy = {\bf{1}}\,\,\,and\,\,x > {\bf{0}}} \right\}\)

e. \(\left\{ {\left( {x,y} \right):xy \ge {\bf{1}}\,\,\,and\,\,x > {\bf{0}}} \right\}\)

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{0}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{6}}}\\{\bf{7}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{\bf{3}}\\{\bf{1}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{4}}\\{ - {\bf{4}}}\end{aligned}} \right)\)

In Exercises 21–24, a, b, and c are noncollinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \)and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

24. Take q on the line segment from b to c and consider the line through q and a, which may be written as\(p = \left( {1 - x} \right)q + xa\)for all real x. Show that, for each x,\(det\left[ {\begin{array}{*{20}{c}}{\widetilde p}&{\widetilde b}&{\widetilde c}\end{array}} \right] = x \cdot det\left[ {\begin{array}{*{20}{c}}{\widetilde a}&{\widetilde b}&{\widetilde c}\end{array}} \right]\). From this and earlier work, conclude that the parameter x is the first barycentric coordinate of p. However, by construction, the parameter x also determines the relative distance between p and q along the segment from q to a. (When x = 1, p = a.) When this fact is applied to Example 5, it shows that the colors at vertex a and the point q are smoothly interpolated as p moves along the line between a and q.

Question: In Exercise 10, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

10. \(\left( {\begin{array}{*{20}{c}}1\\2\\0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\2\\{ - 1}\\{ - 3}\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\3\\2\\7\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\2\\{ - 1}\\{ - 1}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free