Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Repeat Exercise 21 for \({{\bf{f}}_0}\left( {\frac{3}{4}} \right)\), \({{\bf{f}}_1}\left( {\frac{3}{4}} \right)\), and \({\bf{g}}\left( {\frac{3}{4}} \right)\).

Short Answer

Expert verified

The diagram is shown below:

Step by step solution

01

Describe the given information

It is given that \({{\rm{p}}_0},{\rm{ }}{{\rm{p}}_1},{\rm{ }}{{\rm{p}}_2} \in {\mathbb{R}^n}\). Also,\({{\rm{f}}_0}\left( t \right) = \left( {1 - t} \right){{\rm{p}}_0} + t{{\rm{p}}_1}\), \({{\rm{f}}_1}\left( t \right) = \left( {1 - t} \right){{\rm{p}}_1} + t{{\rm{p}}_2}\)and \({\rm{g}}\left( t \right) = \left( {1 - t} \right){{\rm{f}}_0}\left( t \right) + t{{\rm{f}}_1}\left( t \right)\).The graph of\({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\),\({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\) and\({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\) is to be drawn.

02

Step 2:Find the values of \({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\),\({{\rm{f}}_1}\left( {\frac{3}{4}} \right)\) and\({\rm{g}}\left( {\frac{3}{4}} \right)\)

The values of \({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\),\({{\rm{f}}_1}\left( {\frac{3}{4}} \right)\) and\({\rm{g}}\left( {\frac{3}{4}} \right)\)are calculated as:

\(\begin{aligned}{}{{\rm{f}}_0}\left( {\frac{3}{4}} \right) &= \left( {1 - \frac{3}{4}} \right){{\rm{p}}_0} + \frac{3}{4}{{\rm{p}}_1}\\ &= \frac{1}{4}{{\rm{p}}_0} + \frac{3}{4}{{\rm{p}}_1}\\\frac{1}{4}\left( {{{\rm{p}}_0} + 3{{\rm{p}}_1}} \right)\end{aligned}\)

It shows that\({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\)is\(\frac{1}{4}\)of the distance of the line\({{\rm{p}}_0}{\rm{, }}{{\rm{p}}_1}\)from the point\({{\rm{p}}_0}\), and\(\frac{3}{4}\)of the distance of the line\({{\rm{p}}_0}{\rm{, }}{{\rm{p}}_1}\)from the point\({{\rm{p}}_1}\).

\(\begin{aligned}{}{{\rm{f}}_1}\left( {\frac{3}{4}} \right) &= \left( {1 - \frac{3}{4}} \right){{\rm{p}}_1} + \frac{3}{4}{{\rm{p}}_2}\\ &= \frac{1}{4}{{\rm{p}}_1} + \frac{3}{4}{{\rm{p}}_2}\\\frac{1}{4}\left( {{{\rm{p}}_1} + 3{{\rm{p}}_2}} \right)\end{aligned}\)

It shows that \({{\rm{f}}_1}\left( {\frac{3}{4}} \right)\)is\(\frac{1}{4}\)of the distance of the line\({{\rm{p}}_0}{\rm{ }}{{\rm{p}}_1}\)from the point\({{\rm{p}}_0}\), and\(\frac{3}{4}\)of the distance of the line\({{\rm{p}}_0}{\rm{ }}{{\rm{p}}_1}\)from the point\({{\rm{p}}_1}\).

\(\begin{aligned}{}{\rm{g}}\left( {\frac{3}{4}} \right) &= \left( {1 - \frac{3}{4}} \right){{\rm{f}}_0}\left( {\frac{3}{4}} \right) + \frac{1}{2}{{\rm{f}}_1}\left( {\frac{3}{4}} \right)\\ &= \frac{1}{4}{{\rm{f}}_0}\left( {\frac{3}{4}} \right) + \frac{3}{4}{{\rm{f}}_1}\left( {\frac{3}{4}} \right)\\ &= \frac{1}{4}\left( {{{\rm{f}}_0}\left( {\frac{3}{4}} \right) + 3{{\rm{f}}_1}\left( {\frac{3}{4}} \right)} \right)\end{aligned}\)

It shows that \({\rm{g}}\left( {\frac{3}{4}} \right)\)is\(\frac{1}{4}\)of the distance of the line\({{\rm{f}}_0}\left( {\frac{3}{4}} \right){{\rm{f}}_1}\left( {\frac{3}{4}} \right)\)from the point\({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\), and\(\frac{3}{4}\)of the distance of the line\({{\rm{p}}_0}{\rm{ }}{{\rm{p}}_1}\)from the point\({{\rm{f}}_1}\left( {\frac{3}{4}} \right)\).

03

Step 3:Draw the diagram

Draw lines joining points\({{\rm{p}}_0}{\rm{, }}{{\rm{p}}_1}\), and points\({{\rm{p}}_1}{\rm{, }}{{\rm{p}}_2}\),such that\({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\),\({{\rm{f}}_1}\left( {\frac{3}{4}} \right)\)is one fourth from front end and three fourth from rear end.

Afterwards, the\({\rm{g}}\left( {\frac{3}{4}} \right)\)is at its one fourth from front end and three fourth from rear end of the line joining\({{\rm{f}}_0}\left( {\frac{1}{2}} \right)\),\({{\rm{f}}_1}\left( {\frac{1}{2}} \right)\).

The diagram is shown below:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\bf{x}} \le {\bf{b}}\) and \({\bf{x}} \ge {\bf{0}}\).

5. \(A = \left( {\begin{array}{*{20}{c}}1&2\\3&1\end{array}} \right),{\rm{ }}{\bf{b}} = \left( {\begin{array}{*{20}{c}}{{\bf{10}}}\\{{\bf{15}}}\end{array}} \right)\)

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the column space of the matrix \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{5}}&{\bf{2}}\\{ - {\bf{4}}}&{ - {\bf{4}}}\end{array}} \right)\). That is, \(H = {\bf{Col}}\,B\).(Hint: How is \({\bf{Col}}\,B\)related to Nul \({B^T}\)? See section 6.1)

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let A be the \({\bf{1}} \times {\bf{4}}\) matrix \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{3}}}&{\bf{4}}&{ - {\bf{2}}}\end{array}} \right)\) and let \(b = {\bf{5}}\). Let \(H = \left\{ {{\bf{x}}\,\,{\rm{in}}\,{\mathbb{R}^{\bf{4}}}:A{\bf{x}} = {\bf{b}}} \right\}\).

Question: 14. Show that if \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a basis for \({\mathbb{R}^3}\), then aff \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is the plane through \({{\rm{v}}_{\rm{1}}}{\rm{, }}{{\rm{v}}_{\rm{2}}}\) and \({{\rm{v}}_{\rm{3}}}\).

Explain why any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free