In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{aligned}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{aligned}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each of the given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)
a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{8}}\\{\bf{4}}\end{aligned}} \right)\)
b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{6}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right)\)
c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{ - {\bf{1}}}\\{ - {\bf{5}}}\end{aligned}} \right)\)