Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question 1: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\3\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right)\) in \({\mathbb{R}^2}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a.\(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 3{x_1} + {x_2}\)

Short Answer

Expert verified
  1. \({{\mathop{\rm p}\nolimits} _1}\) is the point in \(S\) at which \(m = 1\).
  2. \({{\mathop{\rm p}\nolimits} _2}\)is the point in \(S\) at which \(m = 5\).
  3. \({{\mathop{\rm p}\nolimits} _3}\) is the point in \(S\) at which \(m = 5\).

Step by step solution

01

The maximum and minimum is attained at an extreme point

Theorem 16states that considered \(f\) as a linear functional defined on a nonempty compact convex set \(S\).

Then there are extreme points \(\widehat {\mathop{\rm v}\nolimits} \) and \(\widehat {\mathop{\rm w}\nolimits} \) of \(S\) such that \(f\left( {\widehat {\mathop{\rm v}\nolimits} } \right) = \mathop {\max }\limits_{{\mathop{\rm v}\nolimits} \in S} f\left( {\mathop{\rm v}\nolimits} \right)\) and \(f\left( {\widehat {\mathop{\rm w}\nolimits} } \right) = \mathop {\min }\limits_{{\mathop{\rm v}\nolimits} \in S} f\left( {\mathop{\rm v}\nolimits} \right)\).

02

Determine the maximum value \(m\) of \(f\)

According to theorem 16, the maximum value is attained at one of the extreme points of \(S\).

Evaluate f at the extreme point and select the largest value to find \(m\) as shown below:

  1. \({f_1}\left( {{{\mathop{\rm p}\nolimits} _1}} \right) = 1\), \({f_1}\left( {{{\mathop{\rm p}\nolimits} _2}} \right) = - 1\), \({f_1}\left( {{{\mathop{\rm p}\nolimits} _3}} \right) = - 3\), therefore, \({m_1} = 1\). Graph the line \({f_1}\left( {{x_1},{x_2}} \right) = {m_1}\) which means that \({x_1} - {x_2} = 1\), and \({\mathop{\rm x}\nolimits} = {{\mathop{\rm p}\nolimits} _1}\) is the only point in \(S\) at which \({f_1}\left( {\mathop{\rm x}\nolimits} \right) = 1\).


b. \({f_2}\left( {{{\mathop{\rm p}\nolimits} _1}} \right) = 1\), \({f_2}\left( {{{\mathop{\rm p}\nolimits} _2}} \right) = 5\), \({f_2}\left( {{{\mathop{\rm p}\nolimits} _3}} \right) = 1\), therefore, \({m_2} = 5\). Graph the line \({f_2}\left( {{x_1},{x_2}} \right) = {m_2}\) which means that \({x_1} + {x_2} = 5\), and \({\mathop{\rm x}\nolimits} = {{\mathop{\rm p}\nolimits} _2}\) is the only point in \(S\) at which \({f_2}\left( {\mathop{\rm x}\nolimits} \right) = 5\).


c. \({f_3}\left( {{{\mathop{\rm p}\nolimits} _1}} \right) = - 3\), \({f_3}\left( {{{\mathop{\rm p}\nolimits} _2}} \right) = - 3\), \({f_3}\left( {{{\mathop{\rm p}\nolimits} _3}} \right) = 5\), therefore, \({m_3} = 5\). Graph the line \({f_3}\left( {{x_1},{x_2}} \right) = {m_3}\) which means that \( - 3{x_1} + {x_2} = 5\), and \({\mathop{\rm x}\nolimits} = {{\mathop{\rm p}\nolimits} _3}\) is the only point in \(S\) at which \({f_3}\left( {\mathop{\rm x}\nolimits} \right) = 5\).


Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose \({\bf{y}}\) is orthogonal to \({\bf{u}}\) and \({\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to every \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\). (Hint: An arbitrary \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\) has the form \({\bf{w}} = {c_1}{\bf{u}} + {c_2}{\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to such a vector \({\bf{w}}\).)

Let \(W = \left\{ {{{\bf{v}}_1},......,{{\bf{v}}_p}} \right\}\). Show that if \({\bf{x}}\) is orthogonal to each \({{\bf{v}}_j}\), for \(1 \le j \le p\), then \({\bf{x}}\) is orthogonal to every vector in \(W\).

Question: 25. Let \(p = \left( \begin{array}{l}1\\1\end{array} \right)\). Find a hyperplane \(\left( {f:d} \right)\) that strictly separates \(B\left( {0,3} \right)\) and \(B\left( {p,1} \right)\). (Hint: After finding \(f\), show that the point \(v = \left( {1 - .75} \right)0 + .75p\) is neither in \(B\left( {0,3} \right)\) nor in \(B\left( {p,1} \right)\)).

TrueType fonts, created by Apple Computer and Adobe Systems, use quadratic Bezier curves, while PostScript fonts, created by Microsoft, use cubic Bezier curves. The cubic curves provide more flexibility for typeface design, but it is important to Microsoft that every typeface using quadratic curves can be transformed into one that used cubic curves. Suppose that \({\mathop{\rm w}\nolimits} \left( t \right)\) is a quadratic curve, with control points \({{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},\) and \({{\mathop{\rm p}\nolimits} _2}\).

  1. Find control points \({{\mathop{\rm r}\nolimits} _0},{{\mathop{\rm r}\nolimits} _1},{{\mathop{\rm r}\nolimits} _2},\), and \({{\mathop{\rm r}\nolimits} _3}\) such that the cubic Bezier curve \({\mathop{\rm x}\nolimits} \left( t \right)\) with these control points has the property that \({\mathop{\rm x}\nolimits} \left( t \right)\) and \({\mathop{\rm w}\nolimits} \left( t \right)\) have the same initial and terminal points and the same tangent vectors at \(t = 0\)and\(t = 1\). (See Exercise 16.)
  1. Show that if \({\mathop{\rm x}\nolimits} \left( t \right)\) is constructed as in part (a), then \({\mathop{\rm x}\nolimits} \left( t \right) = {\mathop{\rm w}\nolimits} \left( t \right)\) for \(0 \le t \le 1\).

Question: In Exercise 10, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

10. \(\left( {\begin{array}{*{20}{c}}1\\2\\0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\2\\{ - 1}\\{ - 3}\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\3\\2\\7\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\2\\{ - 1}\\{ - 1}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free