Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{2}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{2}}}\\{\bf{2}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{\bf{4}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{4}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{7}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{\bf{5}}\\{\bf{3}}\end{aligned}} \right)\)

Short Answer

Expert verified

The affine combination is \({\bf{y}} = 2{{\bf{v}}_1} - \frac{3}{2}{{\bf{v}}_2} + \frac{1}{2}{{\bf{v}}_3}\).

Step by step solution

01

Find the translated point

Write the translated points as shown below:

\({{\bf{v}}_2} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}{ - 3}\\0\end{aligned}} \right)\)

\({{\bf{v}}_3} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right)\)

\({{\bf{v}}_4} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}2\\5\end{aligned}} \right)\)

\({\bf{y}} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}4\\1\end{aligned}} \right)\)

Write the equation by using the translated matrix as shown below:

\(\begin{aligned}{c}{\bf{y}} - {{\bf{v}}_1} &= {c_2}\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + {c_3}\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right) + {c_4}\left( {{{\bf{v}}_4} - {{\bf{v}}_1}} \right)\\\left( {\begin{aligned}{*{20}{c}}4\\1\end{aligned}} \right) &= {c_2}\left( {\begin{aligned}{*{20}{c}}{ - 3}\\0\end{aligned}} \right) + {c_3}\left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right) + {c_4}\left( {\begin{aligned}{*{20}{c}}2\\5\end{aligned}} \right)\end{aligned}\)

02

Write the augmented matrix

The augmented matrixcan be written as shown below:

\(M = \left( {\begin{aligned}{*{20}{c}}{ - 3}&{ - 1}&2&4\\0&2&5&1\end{aligned}} \right)\)

Row reduce the augmented matrix as shown below:

\(\begin{aligned}{c}M &= \left( {\begin{aligned}{*{20}{c}}{ - 3}&{ - 1}&2&4\\0&2&5&1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}1&{ - 1}&2&4\\0&2&5&1\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{C_1} \to \frac{{{C_1}}}{3}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}1&{\frac{1}{3}}&{ - \frac{2}{3}}&{ - \frac{4}{3}}\\0&1&{ - \frac{5}{2}}&{\frac{1}{2}}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to - \frac{1}{3}{R_1},\,{R_2} \to \frac{1}{2}{R_2}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}1&0&{ - \frac{9}{6}}&{ - \frac{9}{6}}\\0&1&{\frac{5}{2}}&{\frac{1}{2}}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to {R_1} - \frac{1}{3}{R_2}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}1&0&{ - \frac{3}{2}}&{ - \frac{3}{2}}\\0&1&{\frac{5}{2}}&{\frac{1}{2}}\end{aligned}} \right)\end{aligned}\)

03

Write the system of equations

From the augmented matrix, the system of equation is shown below:

\(\begin{aligned}{c}{c_2} - \frac{3}{4}{c_4} &= - \frac{3}{2}\\{c_2} &= \frac{3}{2}{c_4} - \frac{3}{2}\end{aligned}\)

Let \({c_4} = 0\). Thus the value is shown below:

\({c_2} = - \frac{3}{2}\)and \({c_3} = \frac{1}{2}\)

Substitute the values in the equation of translated point as shown below:

\(\begin{aligned}{c}{\bf{y}} - {{\bf{v}}_1} &= - \frac{3}{2}\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + \frac{1}{2}\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right) + 0\left( {{{\bf{v}}_4} - {{\bf{v}}_1}} \right)\\{\bf{y}} &= {{\bf{v}}_1} - \frac{3}{2}{{\bf{v}}_2} + \frac{3}{2}{{\bf{v}}_1} + \frac{1}{2}{{\bf{v}}_3} - \frac{1}{2}{{\bf{v}}_1}\\{\bf{y}} &= 2{{\bf{v}}_1} - \frac{3}{2}{{\bf{v}}_2} + \frac{1}{2}{{\bf{v}}_3}\end{aligned}\)

So, the vector \({\bf{y}}\) is \(2{{\bf{v}}_1} - \frac{3}{2}{{\bf{v}}_2} + \frac{1}{2}{{\bf{v}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

14.a. Justify each equal sign:

\(3\left( {{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2}} \right) = z'\left( 1 \right) = .5x'\left( 1 \right) = \frac{3}{2}\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\)

b. Show that \({{\mathop{\rm r}\nolimits} _2}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _2}\) to \({{\mathop{\rm p}\nolimits} _3}\).

c. Justify each equal sign: \(3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) = z'\left( 0 \right) = .5x'\left( {.5} \right)\).

d. Use part (c) to show that \(8{{\mathop{\rm r}\nolimits} _1} = - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + 8{{\mathop{\rm r}\nolimits} _0}\).

e. Use part (d) equation (8), and part (a) to show that \({{\mathop{\rm r}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm r}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\). That is, \({{\mathop{\rm r}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm r}\nolimits} _2} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

Question: 11. In Exercises 11 and 12, mark each statement True or False. Justify each answer.

11. a. The set of all affine combinations of points in a set \(S\) is called the affine hull of \(S\).

b. If \(\left\{ {{{\rm{b}}_{\rm{1}}}{\rm{,}}.......{{\rm{b}}_{\rm{2}}}} \right\}\) is a linearly independent subset of \({\mathbb{R}^n}\) and if \({\bf{p}}\) is a linear combination of \({{\rm{b}}_{\rm{1}}}.......{{\rm{b}}_{\rm{k}}}\), then \({\rm{p}}\) is an affine combination of \({{\rm{b}}_{\rm{1}}}.......{{\rm{b}}_{\rm{k}}}\).

c. The affine hull of two distinct points is called a line.

d. A flat is a subspace.

e. A plane in \({\mathbb{R}^3}\) is a hyper plane.

In Exercises 7 and 8, find the barycentric coordinates of p with respect to the affinely independent set of points that precedes it.

8. \(\left( {\begin{array}{{}}0\\1\\{ - 2}\\1\end{array}} \right),\left( {\begin{array}{{}}1\\1\\0\\2\end{array}} \right),\left( {\begin{array}{{}}1\\4\\{ - 6}\\5\end{array}} \right)\), \({\mathop{\rm p}\nolimits} = \left( {\begin{array}{{}}{ - 1}\\1\\{ - 4}\\0\end{array}} \right)\)

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

5.\(\left( {\begin{aligned}{{}}1\\0\\{ - 2}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\1\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 1}\\5\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\5\\{ - 3}\end{aligned}} \right)\)

In Exercises 21-26, prove the given statement about subsets A and B of \({\mathbb{R}^n}\), or provide the required example in \({\mathbb{R}^2}\). A proof for an exercise may use results from earlier exercises (as well as theorems already available in the text).

21. If \(A \subset B\), then B is affine, then \({\mathop{\rm aff}\nolimits} A \subset B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free