Chapter 8: Q19E (page 437)
Question:19.In Exercises 17–20, prove the given statement about subsets\(A\)and\(B\)of\({\mathbb{R}^n}\). A proof for an exercise may use results of earlier exercises.
19. a. \(\left( {\left( {{\rm{conv}}\,A} \right) \cup \left( {{\rm{conv}}\,B} \right)} \right) \subset {\rm{conv}}\left( {A \cup B} \right)\),
b. Find an example in\({\mathbb{R}^2}\)to show that equality need not hold in part
(a)
Short Answer
- It is shown that \(\left( {{\rm{conv}}\,A\,\, \cup {\rm{conv}}\,B} \right) \subset {\rm{conv}}\,\left( {{\rm{A}} \cup \,B} \right)\).
- \(A\) be the two adjacent corners of the square, and B be the other two corners of the square.