Recall the alternative formula for a Bezier curve as shown below:
\({\mathop{\rm x}\nolimits} \left( s \right) = \left( {\begin{aligned}{{}}{{{\left( {1 - s} \right)}^3}}&{3s{{\left( {1 - s} \right)}^2}}&{3{s^2}\left( {1 - s} \right)}&{{s^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\)…(5)
Consider the matrix as\({M_B} = \left( {\begin{aligned}{{}}1&0&0&0\\{ - 3}&3&0&0\\3&{ - 6}&3&0\\{ - 1}&3&{ - 3}&1\end{aligned}} \right)\).
Consider the matrix\({\mathop{\rm u}\nolimits} {\left( s \right)^T} = \left( {\begin{aligned}{{}}1&s&{{s^2}}&{{s^3}}\end{aligned}} \right)\).
\(\begin{aligned}{}{\mathop{\rm x}\nolimits} \left( s \right) &= {\mathop{\rm u}\nolimits} {\left( s \right)^T}M_B^T\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}1&s&{{s^2}}&{{s^3}}\end{aligned}} \right){\left( {\begin{aligned}{{}}1&0&0&0\\{ - 3}&3&0&0\\3&{ - 6}&3&0\\{ - 1}&3&{ - 3}&1\end{aligned}} \right)^T}\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}1&s&{{s^2}}&{{s^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}1&{ - 3}&3&{ - 3}\\0&3&{ - 6}&{ - 3}\\0&0&3&1\\0&0&0&0\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}1&{ - 3 + 3s}&{3 - 6s + 3{s^2}}&{ - 1 + 3s - 3{s^2} + {s^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}1&{ - 3\left( {1 - s} \right)}&{3{{\left( {1 - s} \right)}^2}}&{ - {{\left( {1 - s} \right)}^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\end{aligned}\)
Thus, the matrix product is \({\mathop{\rm x}\nolimits} \left( s \right) = \left( {\begin{aligned}{{}}1&{ - 3\left( {1 - s} \right)}&{3{{\left( {1 - s} \right)}^2}}&{ - {{\left( {1 - s} \right)}^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\).