Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use partitioned matrix multiplication to compute the following matrix product, which appears in the alternative formula (5) for a Bezier curve.

\(\left( {\begin{aligned}{{}}1&0&0&0\\{ - 3}&3&0&0\\3&{ - 6}&3&0\\{ - 1}&3&{ - 3}&1\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\)

Short Answer

Expert verified

The matrix product is \({\mathop{\rm x}\nolimits} \left( s \right) = \left( {\begin{aligned}{{}}1&{ - 3\left( {1 - s} \right)}&{3{{\left( {1 - s} \right)}^2}}&{ - {{\left( {1 - s} \right)}^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\).

Step by step solution

01

Matrix equation for Bezier curve

The matrix whose columns are the four control points is called ageometry matrix\(G\). The\(4 \times 4\)matrix of polynomial coefficients is the Bezier basis matrix\({M_B}\).

If\({\mathop{\rm u}\nolimits} \left( t \right)\)is the column vector of power of t, then the Bezier curve is given by\({\mathop{\rm x}\nolimits} \left( t \right) = G{M_B}{\mathop{\rm u}\nolimits} \left( t \right)\).

The parameter tis replaced by a parameter\(s\):

\({\mathop{\rm x}\nolimits} \left( s \right) = {\mathop{\rm u}\nolimits} {\left( s \right)^T}M_B^T\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\)

02

Use partitioned matrix multiplication to compute the matrix product

Recall the alternative formula for a Bezier curve as shown below:

\({\mathop{\rm x}\nolimits} \left( s \right) = \left( {\begin{aligned}{{}}{{{\left( {1 - s} \right)}^3}}&{3s{{\left( {1 - s} \right)}^2}}&{3{s^2}\left( {1 - s} \right)}&{{s^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\)…(5)

Consider the matrix as\({M_B} = \left( {\begin{aligned}{{}}1&0&0&0\\{ - 3}&3&0&0\\3&{ - 6}&3&0\\{ - 1}&3&{ - 3}&1\end{aligned}} \right)\).

Consider the matrix\({\mathop{\rm u}\nolimits} {\left( s \right)^T} = \left( {\begin{aligned}{{}}1&s&{{s^2}}&{{s^3}}\end{aligned}} \right)\).

\(\begin{aligned}{}{\mathop{\rm x}\nolimits} \left( s \right) &= {\mathop{\rm u}\nolimits} {\left( s \right)^T}M_B^T\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}1&s&{{s^2}}&{{s^3}}\end{aligned}} \right){\left( {\begin{aligned}{{}}1&0&0&0\\{ - 3}&3&0&0\\3&{ - 6}&3&0\\{ - 1}&3&{ - 3}&1\end{aligned}} \right)^T}\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}1&s&{{s^2}}&{{s^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}1&{ - 3}&3&{ - 3}\\0&3&{ - 6}&{ - 3}\\0&0&3&1\\0&0&0&0\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}1&{ - 3 + 3s}&{3 - 6s + 3{s^2}}&{ - 1 + 3s - 3{s^2} + {s^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}1&{ - 3\left( {1 - s} \right)}&{3{{\left( {1 - s} \right)}^2}}&{ - {{\left( {1 - s} \right)}^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\end{aligned}\)

Thus, the matrix product is \({\mathop{\rm x}\nolimits} \left( s \right) = \left( {\begin{aligned}{{}}1&{ - 3\left( {1 - s} \right)}&{3{{\left( {1 - s} \right)}^2}}&{ - {{\left( {1 - s} \right)}^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 13. Suppose \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a basis for \({\mathbb{R}^3}\). Show that Span \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\) is a plane in \({\mathbb{R}^3}\). (Hint: What can you say about \({\rm{u}}\) and \({\rm{v}}\)when Span \(\left\{ {{\rm{u,v}}} \right\}\) is a plane?)

Question: 14. Show that if \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a basis for \({\mathbb{R}^3}\), then aff \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is the plane through \({{\rm{v}}_{\rm{1}}}{\rm{, }}{{\rm{v}}_{\rm{2}}}\) and \({{\rm{v}}_{\rm{3}}}\).

Repeat Exercise 25 with\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\{\bf{2}}\\{ - {\bf{4}}}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{8}}\\{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{{\bf{10}}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{8}}\end{array}} \right]\), and \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{.{\bf{9}}}\\{{\bf{2}}.{\bf{0}}}\\{ - {\bf{3}}.{\bf{7}}}\end{array}} \right]\).

Question: Suppose that the solutions of an equation \(A{\bf{x}} = {\bf{b}}\) are all of the form \({\bf{x}} = {x_{\bf{3}}}{\bf{u}} + {\bf{p}}\), where \({\bf{u}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right)\) and \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{\bf{4}}\end{array}} \right)\). Find points \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) such that the solution set of \(A{\bf{x}} = {\bf{b}}\) is \({\bf{aff}}\left\{ {{{\bf{v}}_{\bf{1}}},\,{{\bf{v}}_{\bf{2}}}} \right\}\).

Question 1: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\3\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right)\) in \({\mathbb{R}^2}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a.\(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 3{x_1} + {x_2}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free