Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

15. Sometimes only one-half of a Bezier curve needs further subdividing. For example, subdivision of the “left” side is accomplished with parts (a) and (c) of Exercise 13 and equation (8). When both halves of the curve \({\mathop{\rm x}\nolimits} \left( t \right)\) are divided, it is possible to organize calculations efficiently to calculate both left and right control points concurrently, without using equation (8) directly.

a. Show that the tangent vector \(y'\left( 1 \right)\) and \(z'\left( 0 \right)\) are equal.

b. Use part (a) to show that \({{\mathop{\rm q}\nolimits} _3}\) (which equals \({{\mathop{\rm r}\nolimits} _0}\)) is the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _2}\) to \({{\mathop{\rm r}\nolimits} _1}\).

c. Using part (b) and the results of Exercises 13 and 14, write an algorithm that computes the control points for both \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) in an efficient manner. The only operations needed are sums and division by 2.

Short Answer

Expert verified
  1. Itis proved that the tangent vector \(y'\left( 1 \right)\) and \(z'\left( 0 \right)\) are equal.
  2. Itis proved that \({{\mathop{\rm q}\nolimits} _3}\) is the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _2}\) to \({r_1}\).
  3. The algorithm that computes the control points for both \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) is obtained.

Step by step solution

01

Show that tangent vectors \(y'\left( 1 \right)\) and  \(z'\left( 0 \right)\) are equal

a)

Recall the chain rule for the derivatives as shown below:

\(y'\left( t \right) = .5x'\left( {.5t} \right)y'\left( t \right)\,\,\,\,{\mathop{\rm and}\nolimits} \,\,\,z'\left( t \right) = .5x'\left( {.5 + .5t} \right)\,\,\,\,{\mathop{\rm for}\nolimits} 0 \le t \le 1\)…(11)

From equation (11) with \(t = 1\) in \(y'\left( t \right)\) and \(t = 0\) in \(z'\left( t \right)\) as shown below:

\(\begin{aligned}{}y'\left( 1 \right) &= .5x'\left( {.5} \right)\\ &= z'\left( 0 \right)\end{aligned}\)

Thus, it is proved that the tangent vector \(y'\left( 1 \right)\) and \(z'\left( 0 \right)\) are equal.

02

Show that \({{\mathop{\rm q}\nolimits} _3}\) is the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _2}\) to \({{\mathop{\rm r}\nolimits} _1}\)

It is noted that \(y'\left( 1 \right) = 3\left( {{{\mathop{\rm q}\nolimits} _3} - {{\mathop{\rm q}\nolimits} _2}} \right)\). The following equation follows from equation (9), for \({\mathop{\rm y}\nolimits} \left( t \right)\) its control points in place of \({\mathop{\rm x}\nolimits} \left( t \right)\) and its control points. Likewise, for \({\mathop{\rm z}\nolimits} \left( t \right)\) and its control points, \(z'\left( 0 \right) = 3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right)\).

From part (a) as shown below:

\(3\left( {{{\mathop{\rm q}\nolimits} _3} - {{\mathop{\rm q}\nolimits} _2}} \right) = 3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right)\)

Substitute \({{\mathop{\rm r}\nolimits} _0} = {{\mathop{\rm q}\nolimits} _3}\) in the above equation as shown below:

\(\begin{aligned}{}3\left( {{{\mathop{\rm q}\nolimits} _3} - {{\mathop{\rm q}\nolimits} _2}} \right) &= 3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm q}\nolimits} _3}} \right)\\{{\mathop{\rm q}\nolimits} _3} - {{\mathop{\rm q}\nolimits} _2} &= {{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm q}\nolimits} _3}\\2{{\mathop{\rm q}\nolimits} _3} &= {{\mathop{\rm r}\nolimits} _1} + {{\mathop{\rm q}\nolimits} _2}\\{{\mathop{\rm q}\nolimits} _3} &= \frac{{\left( {{{\mathop{\rm q}\nolimits} _2} + {{\mathop{\rm r}\nolimits} _1}} \right)}}{2}\end{aligned}\)

Thus, it is proved that \({{\mathop{\rm q}\nolimits} _3}\) is the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _2}\) to \({r_1}\).

03

Write an algorithm that computes the control point for both \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\)

The new control points are related to the original control points by simple formulas are\({{\mathop{\rm q}\nolimits} _0} = {{\mathop{\rm p}\nolimits} _0}\)and\({{\mathop{\rm r}\nolimits} _3} = {{\mathop{\rm p}\nolimits} _3}\).

Recall the result from exercise 13 as shown below:

\({{\mathop{\rm q}\nolimits} _1}\)is the midpoint of the segment from\({{\mathop{\rm p}\nolimits} _0}\)to\({{\mathop{\rm p}\nolimits} _1}\)is\({{\mathop{\rm q}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _0}} \right)\).

\({{\mathop{\rm q}\nolimits} _2}\)is the midpoint of the segment from\({{\mathop{\rm q}\nolimits} _1}\)to the midpoint of the segment from

\({{\mathop{\rm p}\nolimits} _1}\)to\({{\mathop{\rm p}\nolimits} _2}\)is\({{\mathop{\rm q}\nolimits} _2} = \frac{1}{2}\left( {{{\mathop{\rm q}\nolimits} _1} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

Recall the result from Exercise 14 as shown below:

\({{\mathop{\rm r}\nolimits} _1}\)is the midpoint of the segment from\({{\mathop{\rm r}\nolimits} _2}\)to the midpoint of the segment from\({{\mathop{\rm p}\nolimits} _1}\)to\({{\mathop{\rm p}\nolimits} _2}\)is\({{\mathop{\rm r}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm r}\nolimits} _2} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

Here\({{\mathop{\rm r}\nolimits} _2}\)is the midpoint of the segment from\({{\mathop{\rm p}\nolimits} _2}\)to\({{\mathop{\rm p}\nolimits} _3}\)is\({{\mathop{\rm r}\nolimits} _2} = \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)\).

Write the algorithm that computes the control points for both\({\mathop{\rm y}\nolimits} \left( t \right)\)and\({\mathop{\rm z}\nolimits} \left( t \right)\)as shown below

Set the formulas\({{\mathop{\rm q}\nolimits} _0} = {{\mathop{\rm p}\nolimits} _0}\)and\({{\mathop{\rm r}\nolimits} _3} = {{\mathop{\rm p}\nolimits} _3}\).

Compute\({{\mathop{\rm q}\nolimits} _1}\)is the midpoint of the segment from\({{\mathop{\rm p}\nolimits} _0}\)to\({{\mathop{\rm p}\nolimits} _1}\)is\({{\mathop{\rm q}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _0}} \right)\)and\({{\mathop{\rm r}\nolimits} _2}\)is the midpoint of the segment from\({{\mathop{\rm p}\nolimits} _2}\)to\({{\mathop{\rm p}\nolimits} _3}\)is\({{\mathop{\rm r}\nolimits} _2} = \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)\).

Consider\({\mathop{\rm m}\nolimits} = \frac{{{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}}}{2}\)

Compute\({{\mathop{\rm q}\nolimits} _2}\)is the midpoint of the segment from\({{\mathop{\rm q}\nolimits} _1}\)to\({\mathop{\rm m}\nolimits} \)is\({{\mathop{\rm q}\nolimits} _2} = \frac{1}{2}\left( {{{\mathop{\rm q}\nolimits} _1} + {\mathop{\rm m}\nolimits} } \right)\).

Compute\({{\mathop{\rm r}\nolimits} _1}\)is the midpoint of the segment from\({{\mathop{\rm r}\nolimits} _2}\)to\({\mathop{\rm m}\nolimits} \)is\({{\mathop{\rm r}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm r}\nolimits} _2} + {\mathop{\rm m}\nolimits} } \right)\).

Compute\({{\mathop{\rm q}\nolimits} _3}\)is the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _2}\) to \({r_1}\) is \({{\mathop{\rm q}\nolimits} _3} = \frac{{\left( {{{\mathop{\rm q}\nolimits} _2} + {{\mathop{\rm r}\nolimits} _1}} \right)}}{2}\).

Set the control points \({{\mathop{\rm r}\nolimits} _0} = {{\mathop{\rm q}\nolimits} _3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let\({v_1} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{4}}\end{array}} \right]\),\({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{0}}\end{array}} \right]\), and let\(S = \left\{ {{v_1},{v_2},{v_3}} \right\}\).

  1. Show that the set is affinely independent.
  2. Find the barycentric coordinates of\({p_1} = \left[ {\begin{array}{*{20}{c}}2\\3\end{array}} \right]\),\({p_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\end{array}} \right]\),\({p_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\{\bf{1}}\end{array}} \right]\),\({p_{\bf{4}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{1}}}\end{array}} \right]\), and\({p_{\bf{5}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{1}}\end{array}} \right]\), with respect to S.
  3. Let\(T\)be the triangle with vertices\({v_1}\),\({v_{\bf{2}}}\), and\({v_{\bf{3}}}\). When the sides of\(T\)are extended, the lines divide\({\mathbb{R}^{\bf{2}}}\)into seven regions. See Figure 8. Note the signs of the barycentric coordinates of the points in each region. For example,\({{\bf{p}}_{\bf{5}}}\)is inside the triangle\(T\)and all its barycentric coordinates are positive. Point\({{\bf{p}}_{\bf{1}}}\)has coordinates\(\left( { - , + , + } \right)\). Its third coordinate is positive because\({{\bf{p}}_{\bf{1}}}\)is on the\({{\bf{v}}_{\bf{3}}}\)side of the line through\({{\bf{v}}_{\bf{1}}}\)and\({{\bf{v}}_{\bf{2}}}\). Its first coordinate is negative because\({{\bf{p}}_{\bf{1}}}\)is opposite the\({{\bf{v}}_{\bf{1}}}\)side of the line through\({{\bf{v}}_{\bf{2}}}\)and\({{\bf{v}}_{\bf{3}}}\). Point\({{\bf{p}}_{\bf{2}}}\)is on the\({{\bf{v}}_{\bf{2}}}{{\bf{v}}_{\bf{3}}}\)edge of\(T\). Its coordinates are\(\left( {0, + , + } \right)\). Without calculating the actual values, determine the signs of the barycentric coordinates of points\({{\bf{p}}_{\bf{6}}}\),\({{\bf{p}}_{\bf{7}}}\), and\({{\bf{p}}_{\bf{8}}}\)as shown in Figure 8.

A quartic Bézier curve is determined by five control points,

\({{\bf{p}}_{\bf{o}}}{\bf{,}}\,{\rm{ }}{{\bf{p}}_{\bf{1}}}\,{\bf{,}}{\rm{ }}{{\bf{p}}_{\bf{2}}}\,{\bf{,}}{\rm{ }}{{\bf{p}}_{\bf{3}}}\)and \({{\bf{p}}_4}\):

\({\bf{x}}\left( t \right) = {\left( {1 - t} \right)^4}{{\bf{p}}_0} + 4t{\left( {1 - t} \right)^3}{{\bf{p}}_1} + 6{t^2}{\left( {1 - t} \right)^2}{{\bf{p}}_2} + 4{t^3}\left( {1 - t} \right){{\bf{p}}_3} + {t^4}{{\bf{p}}_4}\)for \(0 \le t \le 1\)

Construct the quartic basis matrix \({M_B}\) for \({\bf{x}}\left( t \right)\).

The conditions for affine dependence are stronger than those for linear dependence, so an affinely dependent set is automatically linearly dependent. Also, a linearly independent set cannot be affinely dependent and therefore must be affinely independent. Construct two linearly dependent indexed sets\({S_{\bf{1}}}\)and\({S_{\bf{2}}}\)in\({\mathbb{R}^2}\)such that\({S_{\bf{1}}}\)is affinely dependent and\({S_{\bf{2}}}\)is affinely independent. In each case, the set should contain either one, two, or three nonzero points.

Question: 27. Give an example of a closed subset\(S\)of\({\mathbb{R}^{\bf{2}}}\)such that\({\rm{conv}}\,S\)is not closed.

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the column space of the matrix \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{ - {\bf{4}}}&{\bf{2}}\\{\bf{7}}&{ - {\bf{6}}}\end{array}} \right)\). That is, \(H = {\bf{Col}}\,B\).(Hint: How is \({\bf{Col}}\,B\) related to Nul \({B^T}\)? See section 6.1)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free