Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The conditions for affine dependence are stronger than those for linear dependence, so an affinely dependent set is automatically linearly dependent. Also, a linearly independent set cannot be affinely dependent and therefore must be affinely independent. Construct two linearly dependent indexed sets\({S_{\bf{1}}}\)and\({S_{\bf{2}}}\)in\({\mathbb{R}^2}\)such that\({S_{\bf{1}}}\)is affinely dependent and\({S_{\bf{2}}}\)is affinely independent. In each case, the set should contain either one, two, or three nonzero points.

Short Answer

Expert verified

The indexed set \({S_1}\)is affinelyand linearly dependent.

The indexed set \({S_2}\) is affinelyand linearly independent.

Step by step solution

01

State the condition for affinely dependence

The set is said to be affinely dependent if the set \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},...,{{\bf{v}}_p}} \right\}\) in the dimension\({\mathbb{R}^n}\) exists such that for non-zero scalars\({c_1},{c_2},...,{c_p}\), the sum of scalars is zero i.e.\({c_1} + {c_2} + ... + {c_p} = 0\), and \({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + ... + {c_p}{{\bf{v}}_p} = 0\).

02

Show affinely dependence

Let\({S_1} = \left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},{{\bf{v}}_3}} \right\}\)be the set of vectors, where\({{\bf{v}}_1} = \left[ {\begin{aligned}{{}{}}3\\{ - 3}\end{aligned}} \right]\),\({{\bf{v}}_2} = \left[ {\begin{aligned}{{}{}}0\\6\end{aligned}} \right]\), and\({{\bf{v}}_3} = \left[ {\begin{aligned}{{}{}}2\\0\end{aligned}} \right]\).

Let the newpoints, \({{\bf{v}}_3} - {{\bf{v}}_1}\)and \({{\bf{v}}_2} - {{\bf{v}}_1}\), be obtained by eliminating the first point.

\(\begin{aligned}{}{{\bf{v}}_3} - {{\bf{v}}_1} &= \left[ {\begin{aligned}{{}{}}2\\0\end{aligned}} \right] - \left[ {\begin{aligned}{{}{}}3\\{ - 3}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{{}{}}{ - 1}\\3\end{aligned}} \right]\end{aligned}\)

And

\(\begin{aligned}{}{{\bf{v}}_2} - {{\bf{v}}_1} &= \left[ {\begin{aligned}{{}{}}0\\6\end{aligned}} \right] - \left[ {\begin{aligned}{{}{}}3\\{ - 3}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{{}{}}{ - 3}\\9\end{aligned}} \right]\end{aligned}\)

So, \({{\bf{v}}_2} - {{\bf{v}}_1} = 3\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right)\).

Simplify the equation \({{\bf{v}}_2} - {{\bf{v}}_1} = 3\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right)\).

\[\begin{aligned}{}{{\bf{v}}_2} - {{\bf{v}}_1} &= 3{{\bf{v}}_3} - 3{{\bf{v}}_1}\\2{{\bf{v}}_1} + {{\bf{v}}_2} - 3{{\bf{v}}_3} &= 0\end{aligned}\]

If the vectors are affinely dependent, the sum of weightsis 0. In the equation \(3{{\bf{v}}_1} + {{\bf{v}}_2} - 3{{\bf{v}}_3} = 0\), the weights are 2, 1, and \( - 3\). So,

\(2 + 1 - 3 = 0\).

Thus, the indexed set \({S_1}\) is affinelyand linearly dependent.

03

 Step 3: Show affinely independence

Let\({S_2} = \left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}}} \right\}\)be the set of vectors, where\({{\bf{v}}_1} = \left[ {\begin{aligned}{{}{}}1\\2\end{aligned}} \right]\)and\({{\bf{v}}_2} = \left[ {\begin{aligned}{{}{}}2\\4\end{aligned}} \right]\).

So, \({{\bf{v}}_2} = 2{{\bf{v}}_1}\).

Simplify the equation \({{\bf{v}}_2} = 2{{\bf{v}}_1}\).

\({{\bf{v}}_2} - 2{{\bf{v}}_1} = 0\)

For thevectors to be affinely dependent, the sum of weights must be 0. In the equation \({{\bf{v}}_2} - 2{{\bf{v}}_1} = 0\), the weights are1 and \( - 2\). So,

\(\begin{aligned}{}1 - 2 &= - 1\\ &\ne 0\end{aligned}\).

Thus, the indexed set \({S_2}\) is affinelyand linearly independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use partitioned matrix multiplication to compute the following matrix product, which appears in the alternative formula (5) for a Bezier curve.

\(\left( {\begin{aligned}{{}}1&0&0&0\\{ - 3}&3&0&0\\3&{ - 6}&3&0\\{ - 1}&3&{ - 3}&1\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\)

Question: In Exercise 3, determine whether each set is open or closed or neither open nor closed.

3. a. \(\left\{ {\left( {x,y} \right):y > {\bf{0}}} \right\}\)

b. \(\left\{ {\left( {x,y} \right):x = {\bf{2}}\,\,\,and\,\,{\bf{1}} \le y \le {\bf{3}}} \right\}\)

c. \(\left\{ {\left( {x,y} \right):x = {\bf{2}}\,\,\,and\,\,{\bf{1}} < y < {\bf{3}}} \right\}\)

d. \(\left\{ {\left( {x,y} \right):xy = {\bf{1}}\,\,\,and\,\,x > {\bf{0}}} \right\}\)

e. \(\left\{ {\left( {x,y} \right):xy \ge {\bf{1}}\,\,\,and\,\,x > {\bf{0}}} \right\}\)

Question: 23. Let \({{\bf{v}}_1} = \left( \begin{array}{l}1\\1\end{array} \right)\), \({{\bf{v}}_2} = \left( \begin{array}{l}3\\0\end{array} \right)\), \({{\bf{v}}_3} = \left( \begin{array}{l}5\\3\end{array} \right)\) and \({\bf{p}} = \left( \begin{array}{l}4\\1\end{array} \right)\). Find a hyperplane \(f:d\) (in this case, a line) that strictly separates \({\bf{p}}\) from \({\rm{conv}}\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\).

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

15. Sometimes only one-half of a Bezier curve needs further subdividing. For example, subdivision of the โ€œleftโ€ side is accomplished with parts (a) and (c) of Exercise 13 and equation (8). When both halves of the curve \({\mathop{\rm x}\nolimits} \left( t \right)\) are divided, it is possible to organize calculations efficiently to calculate both left and right control points concurrently, without using equation (8) directly.

a. Show that the tangent vector \(y'\left( 1 \right)\) and \(z'\left( 0 \right)\) are equal.

b. Use part (a) to show that \({{\mathop{\rm q}\nolimits} _3}\) (which equals \({{\mathop{\rm r}\nolimits} _0}\)) is the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _2}\) to \({{\mathop{\rm r}\nolimits} _1}\).

c. Using part (b) and the results of Exercises 13 and 14, write an algorithm that computes the control points for both \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) in an efficient manner. The only operations needed are sums and division by 2.

Let\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\3\\{ - 6}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{7}}\\3\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{9}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{9}}\end{array}} \right]\), \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{1.4}\\{{\bf{1}}.{\bf{5}}}\\{ - {\bf{3}}.{\bf{1}}}\end{array}} \right]\), and \({\bf{x}}\left( t \right) = {\bf{a}} + t{\bf{b}}\)for \(t \ge {\bf{0}}\).Find the point where the ray\({\bf{x}}\left( t \right)\)intersects the plane that contains the triangle with vertices\({v_1}\),\({v_{\bf{2}}}\), and\({v_{\bf{3}}}\). Is this point inside the triangle?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free