Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose \({{\bf{v}}_{\bf{1}}}\),….., \({{\bf{v}}_{\bf{k}}}\) are linearly independent vectors in \({\mathbb{R}^n}\left( {{\bf{1}} \le k \le n} \right)\). Then the set \({X^k} = {\bf{conv}}\;\left\{ { \pm {{\bf{v}}_{\bf{1}}},......, \pm {{\bf{v}}_k}} \right\}\) is called a k-crosspolytope.

a. Sketch \({X^{\bf{1}}}\) and \({X^{\bf{2}}}\).

b. Determine the number of k-faces of the 3-dimensional crosspolytope \({X^{\bf{3}}}\) for \(k = {\bf{0}},{\bf{1}},\,{\bf{2}}\). What is the another name of \({X^{\bf{3}}}\).

c. Determine the number of k-faces of the 4-dimensional crosspolytope \({X^{\bf{4}}}\) for \(k = {\bf{0}},{\bf{1}},\,{\bf{2}},{\bf{3}}\). Verify that your answer satisfies Euler’s formula.

d. Find a formula for \({f_k}\left( {{X^n}} \right)\), the number of k-faces of \({X^n}\) for \({\bf{0}} \le k \le n - {\bf{1}}\).

Short Answer

Expert verified

b. 6, 12, 8, and another name of \({X^3}\) is an octahedron.

c. 8, 24, 32, 16

d. \({f_k}\left( {{X^n}} \right) = {2^{k + 1}}\left( {\begin{array}{*{20}{c}}n\\{k + 1}\end{array}} \right)\). Here \(\left( {\begin{array}{*{20}{c}}a\\b\end{array}} \right) = \frac{{a!}}{{b!\left( {a - b} \right)!}}\) is the binomial coefficient.

Step by step solution

01

Find the solution for part (a)

The plot of \({X^1}\) is a straight line. The figure below represents the sketch for \({X^1}\) passing through vectors 0 and \({{\bf{v}}_1}\).

The plot of \({X^2}\) is a parallelogram for \(k = 2\), and the vectors \({{\bf{v}}_1}\) and \({{\bf{v}}_2}\) that is shown below:

02

Find the solution for part (b)

The number offaces for \(k = 0\):

\({f_0}\left( {{X^3}} \right) = 6\)

The number of faces for \(k = 1\):

\({f_1}\left( {{X^3}} \right) = 12\)

The number of faces for \(k = 2\):

\({f_2}\left( {{X^3}} \right) = 8\)

Euler’s formulacan be verified as follows:

\(\begin{array}{c}{f_0}\left( {{X^3}} \right) - {f_1}\left( {{X^3}} \right) + {f_2}\left( {{X^3}} \right) = 6 - 12 + 8\\ = 2\end{array}\)

Another name for \({X^3}\) is Octahedron.

03

Find the solution for part (c)

The number facesfor \(k = 0\):

\({f_0}\left( {{X^4}} \right) = 8\)

The number of faces for \(k = 1\):

\({f_1}\left( {{X^4}} \right) = 24\)

The number of faces for \(k = 2\):

\({f_2}\left( {{X^4}} \right) = 32\)

The number of faces for \(k = 3\):

\({f_3}\left( {{X^4}} \right) = 16\)

Euler’s formula can be verified as follows:

\(\begin{array}{c}{f_0}\left( {{X^4}} \right) - {f_1}\left( {{X^4}} \right) + {f_2}\left( {{X^4}} \right) + {f_3}\left( {{X^4}} \right) = 8 - 24 + 32 - 16\\ = 0\end{array}\)

04

Find the solution for part (d)

The pattern for the above chart is given by the formula \({f_k}\left( {{X^n}} \right) = {2^{k + 1}}\left( {\begin{array}{*{20}{c}}n\\{k + 1}\end{array}} \right)\). Here \(\left( {\begin{array}{*{20}{c}}a\\b\end{array}} \right) = \frac{{a!}}{{b!\left( {a - b} \right)!}}\) is the binomial coefficient.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Repeat Exercise 7 when

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{ - {\bf{2}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{6}}\\{ - {\bf{5}}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{0}}\\{{\bf{12}}}\\{ - {\bf{6}}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{1}}}\\{{\bf{15}}}\\{ - {\bf{7}}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{5}}}\\{\bf{3}}\\{ - {\bf{8}}}\\{\bf{6}}\end{array}} \right)\), and \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{6}}\\{ - {\bf{6}}}\\{ - {\bf{8}}}\end{array}} \right)\)

Suppose that\(\left\{ {{p_1},{p_2},{p_3}} \right\}\)is an affinely independent set in\({\mathbb{R}^{\bf{n}}}\)and q is an arbitrary point in\({\mathbb{R}^{\bf{n}}}\). Show that the translated set\(\left\{ {{p_1} + q,{p_2} + q,{p_3} + {\bf{q}}} \right\}\)is also affinely independent.

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{0}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{6}}}\\{\bf{7}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{\bf{3}}\\{\bf{1}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{4}}\\{ - {\bf{4}}}\end{aligned}} \right)\)

Question: 14. Show that if \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a basis for \({\mathbb{R}^3}\), then aff \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is the plane through \({{\rm{v}}_{\rm{1}}}{\rm{, }}{{\rm{v}}_{\rm{2}}}\) and \({{\rm{v}}_{\rm{3}}}\).

Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\bf{x}} \le {\bf{b}}\) and \({\bf{x}} \ge {\bf{0}}\).

5. \(A = \left( {\begin{array}{*{20}{c}}1&2\\3&1\end{array}} \right),{\rm{ }}{\bf{b}} = \left( {\begin{array}{*{20}{c}}{{\bf{10}}}\\{{\bf{15}}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free