Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Questions: Let \({F_{\bf{1}}}\) and \({F_{\bf{2}}}\) be 4-dimensional flats in \({\mathbb{R}^{\bf{6}}}\), and suppose that \({F_{\bf{1}}} \cap {F_{\bf{2}}} \ne \phi \). What are the possible dimension of \({F_{\bf{1}}} \cap {F_{\bf{2}}}\)?

Short Answer

Expert verified

The dimension D of the solution set is, \(2 \le D \le 4\).

Step by step solution

01

Find the dimension of \({F_{\bf{1}}} \cap {F_{\bf{2}}}\) for complete overlap

\({F_1}\)and \({F_2}\) have complete overlap, then \({F_1}\), \({F_2}\) have four dimensions.

02

Find the range of dimension

As there is six-dimensional space, at the minimum, they have \(\left( {6 - 4 = 2} \right)\) dimensions. So, the range of dimensions is shown below:

\(2 \le D \le 4\)

Thus, the dimension of the solution set is from 2 to 4.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question 3: Repeat Exercise 1 where \(m\) is the minimum value of f on \(S\) instead of the maximum value.

Let\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\3\\{ - 6}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{7}}\\3\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{9}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{9}}\end{array}} \right]\), \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{1.4}\\{{\bf{1}}.{\bf{5}}}\\{ - {\bf{3}}.{\bf{1}}}\end{array}} \right]\), and \({\bf{x}}\left( t \right) = {\bf{a}} + t{\bf{b}}\)for \(t \ge {\bf{0}}\).Find the point where the ray\({\bf{x}}\left( t \right)\)intersects the plane that contains the triangle with vertices\({v_1}\),\({v_{\bf{2}}}\), and\({v_{\bf{3}}}\). Is this point inside the triangle?

Question: Let \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{3}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{ - {\bf{1}}}\\{\bf{3}}\end{array}} \right)\), \({{\bf{n}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{4}}\\{\bf{2}}\end{array}} \right)\), and \({{\bf{n}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{3}}\\{\bf{1}}\\{\bf{5}}\end{array}} \right)\), let \({H_{\bf{1}}}\) be the hyperplane in \({\mathbb{R}^{\bf{4}}}\) through \({{\bf{p}}_{\bf{1}}}\) with normal \({{\bf{n}}_{\bf{1}}}\), and let \({H_{\bf{2}}}\) be the hyperplane through \({{\bf{p}}_{\bf{2}}}\) with normal \({{\bf{n}}_{\bf{2}}}\). Give an explicit description of \({H_{\bf{1}}} \cap {H_{\bf{2}}}\). (Hint: Find a point p in \({H_{\bf{1}}} \cap {H_{\bf{2}}}\) and two linearly independent vectors \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) that span a subspace parallel to the 2-dimensional flat \({H_{\bf{1}}} \cap {H_{\bf{2}}}\).)

TrueType fonts, created by Apple Computer and Adobe Systems, use quadratic Bezier curves, while PostScript fonts, created by Microsoft, use cubic Bezier curves. The cubic curves provide more flexibility for typeface design, but it is important to Microsoft that every typeface using quadratic curves can be transformed into one that used cubic curves. Suppose that \({\mathop{\rm w}\nolimits} \left( t \right)\) is a quadratic curve, with control points \({{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},\) and \({{\mathop{\rm p}\nolimits} _2}\).

  1. Find control points \({{\mathop{\rm r}\nolimits} _0},{{\mathop{\rm r}\nolimits} _1},{{\mathop{\rm r}\nolimits} _2},\), and \({{\mathop{\rm r}\nolimits} _3}\) such that the cubic Bezier curve \({\mathop{\rm x}\nolimits} \left( t \right)\) with these control points has the property that \({\mathop{\rm x}\nolimits} \left( t \right)\) and \({\mathop{\rm w}\nolimits} \left( t \right)\) have the same initial and terminal points and the same tangent vectors at \(t = 0\)and\(t = 1\). (See Exercise 16.)
  1. Show that if \({\mathop{\rm x}\nolimits} \left( t \right)\) is constructed as in part (a), then \({\mathop{\rm x}\nolimits} \left( t \right) = {\mathop{\rm w}\nolimits} \left( t \right)\) for \(0 \le t \le 1\).

Let\(T\)be a tetrahedron in โ€œstandardโ€ position, with three edges along the three positive coordinate axes in\({\mathbb{R}^3}\), and suppose the vertices are\(a{{\bf{e}}_1}\),\(b{{\bf{e}}_2}\),\(c{{\bf{e}}_{\bf{3}}}\), and 0, where\(\left[ {\begin{array}{*{20}{c}}{{{\bf{e}}_1}}&{{{\bf{e}}_2}}&{{{\bf{e}}_3}}\end{array}} \right] = {I_3}\). Find formulas for the barycentric coordinates of an arbitrary point\({\bf{p}}\)in\({\mathbb{R}^3}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free