Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use only the definition of affine dependence to show that anindexed set \(\left\{ {{v_1},{v_2}} \right\}\) in \({\mathbb{R}^{\bf{n}}}\) is affinely dependent if and only if \({v_1} = {v_2}\).

Short Answer

Expert verified

An indexed set \(\left\{ {{v_1},{v_2}} \right\}\) in \({\mathbb{R}^n}\) is affinely dependent if and only if \({{\bf{v}}_1} = {{\bf{v}}_2}\).

Step by step solution

01

State the condition for affinely dependence

The set is said to be affinely dependent if the set \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},...,{{\bf{v}}_p}} \right\}\) in the dimension\({\mathbb{R}^n}\) exists such that for non-zero scalars\({c_1},{c_2},...,{c_p}\), the sum of scalars is zero i.e. \({c_1} + {c_2} + ... + {c_p} = 0\), and \({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + ... + {c_p}{{\bf{v}}_p} = 0\).

02

Show affinely dependence

An indexed set \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}}} \right\}\)in\({\mathbb{R}^n}\)is affinely dependent if and only if\({{\bf{v}}_{\bf{1}}} = {{\bf{v}}_{\bf{2}}}\).

The set\(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}}} \right\}\)in\({\mathbb{R}^n}\)exists if for non-zero scalars\({c_1}\)and\({c_2}\), the sum is zero i.e.\({c_1} + {c_2} = 0\)and\({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} = 0\).

Here,\({c_1} = - {c_2} \ne 0\). So,\({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} = 0\)can be written as shown below:

\(\begin{aligned}{}\left( { - {c_2}} \right){{\bf{v}}_1} + {c_2}{{\bf{v}}_2} = 0\\ - {c_2}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} = 0\\ - {c_2}\left( {{{\bf{v}}_1} - {{\bf{v}}_2}} \right) = 0\\{{\bf{v}}_1} - {{\bf{v}}_2} = 0\end{aligned}\)

So,\({{\bf{v}}_1} = {{\bf{v}}_2}\).

Thus, an indexed set \(\left\{ {{v_1},{v_2}} \right\}\) in \({\mathbb{R}^n}\) is affinely dependent if and only if \({{\bf{v}}_1} = {{\bf{v}}_2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

TrueType fonts, created by Apple Computer and Adobe Systems, use quadratic Bezier curves, while PostScript fonts, created by Microsoft, use cubic Bezier curves. The cubic curves provide more flexibility for typeface design, but it is important to Microsoft that every typeface using quadratic curves can be transformed into one that used cubic curves. Suppose that \({\mathop{\rm w}\nolimits} \left( t \right)\) is a quadratic curve, with control points \({{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},\) and \({{\mathop{\rm p}\nolimits} _2}\).

  1. Find control points \({{\mathop{\rm r}\nolimits} _0},{{\mathop{\rm r}\nolimits} _1},{{\mathop{\rm r}\nolimits} _2},\), and \({{\mathop{\rm r}\nolimits} _3}\) such that the cubic Bezier curve \({\mathop{\rm x}\nolimits} \left( t \right)\) with these control points has the property that \({\mathop{\rm x}\nolimits} \left( t \right)\) and \({\mathop{\rm w}\nolimits} \left( t \right)\) have the same initial and terminal points and the same tangent vectors at \(t = 0\)and\(t = 1\). (See Exercise 16.)
  1. Show that if \({\mathop{\rm x}\nolimits} \left( t \right)\) is constructed as in part (a), then \({\mathop{\rm x}\nolimits} \left( t \right) = {\mathop{\rm w}\nolimits} \left( t \right)\) for \(0 \le t \le 1\).

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

13. a. Use equation (12) to show that \({{\mathop{\rm q}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\).

b. Use equation (13) to show that \(8{{\mathop{\rm q}\nolimits} _2} = 8{{\mathop{\rm q}\nolimits} _3} + {{\mathop{\rm p}\nolimits} _0} + {{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _2} - {{\mathop{\rm p}\nolimits} _3}\).

c. Use part (b), equation (8), and part (a) to show that \({{\mathop{\rm q}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _1}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\). That is, \({{\mathop{\rm q}\nolimits} _2} = \frac{1}{2}\left( {{{\mathop{\rm q}\nolimits} _1} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the column space of the matrix \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{5}}&{\bf{2}}\\{ - {\bf{4}}}&{ - {\bf{4}}}\end{array}} \right)\). That is, \(H = {\bf{Col}}\,B\).(Hint: How is \({\bf{Col}}\,B\)related to Nul \({B^T}\)? See section 6.1)

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

3.\(\left( {\begin{aligned}{{}}1\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 2}\\{ - 4}\\8\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\{ - 1}\\{11}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{15}\\{ - 9}\end{aligned}} \right)\)

Repeat Exercise 25 with\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\{\bf{2}}\\{ - {\bf{4}}}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{8}}\\{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{{\bf{10}}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{8}}\end{array}} \right]\), and \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{.{\bf{9}}}\\{{\bf{2}}.{\bf{0}}}\\{ - {\bf{3}}.{\bf{7}}}\end{array}} \right]\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free