Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Let \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{3}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{ - {\bf{1}}}\\{\bf{3}}\end{array}} \right)\), \({{\bf{n}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{4}}\\{\bf{2}}\end{array}} \right)\), and \({{\bf{n}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{3}}\\{\bf{1}}\\{\bf{5}}\end{array}} \right)\), let \({H_{\bf{1}}}\) be the hyperplane in \({\mathbb{R}^{\bf{4}}}\) through \({{\bf{p}}_{\bf{1}}}\) with normal \({{\bf{n}}_{\bf{1}}}\), and let \({H_{\bf{2}}}\) be the hyperplane through \({{\bf{p}}_{\bf{2}}}\) with normal \({{\bf{n}}_{\bf{2}}}\). Give an explicit description of \({H_{\bf{1}}} \cap {H_{\bf{2}}}\). (Hint: Find a point p in \({H_{\bf{1}}} \cap {H_{\bf{2}}}\) and two linearly independent vectors \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) that span a subspace parallel to the 2-dimensional flat \({H_{\bf{1}}} \cap {H_{\bf{2}}}\).)

Short Answer

Expert verified

\({H_1} \cap {H_2} = \left\{ {{\bf{x}}:{\bf{x}} = {\bf{p}} + {x_3}{{\bf{v}}_1} + {x_4}{{\bf{v}}_2}} \right\}\)

Step by step solution

01

Find the values of \({d_{\bf{1}}}\) and \({d_{\bf{2}}}\)

Find \({d_1}\) for \({H_1}\).

\(\begin{array}{c}{d_1} = {{\bf{n}}_1} \cdot {{\bf{p}}_1}\\ = 1\left( 2 \right) + 2\left( { - 3} \right) + 4\left( 1 \right) + 2\left( 2 \right)\\ = 4\end{array}\)

Find \({d_2}\) for \({H_2}\).

\(\begin{array}{c}{d_2} = {{\bf{n}}_2} \cdot {{\bf{p}}_2}\\ = 2\left( 2 \right) + 3\left( 2 \right) + 1\left( { - 1} \right) + 5\left( 3 \right)\\ = 22\end{array}\)

02

Write the augmented matrix

The system of equations is:

\(\left( {\begin{array}{*{20}{c}}1&2&4&2\end{array}} \right){\bf{x}} = 4\)

\(\left( {\begin{array}{*{20}{c}}2&3&1&5\end{array}} \right){\bf{x}} = 22\)

The augmented matrix can be written as shown below:

\(\left( {\begin{array}{*{20}{c}}1&2&4&2&4\\2&3&1&5&{22}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0&{ - 10}&4&{32}\\0&1&7&{ - 1}&{ - 14}\end{array}} \right)\)

03

Write the general solution

The general solution is:

\(\begin{array}{c}x = \left( {\begin{array}{*{20}{c}}{32}\\{ - 14}\\0\\0\end{array}} \right) + {x_3}\left( {\begin{array}{*{20}{c}}{10}\\{ - 7}\\1\\0\end{array}} \right) + {x_4}\left( {\begin{array}{*{20}{c}}{ - 4}\\1\\0\\1\end{array}} \right)\\ = p + {x_3}{{\bf{v}}_1} + {x_4}{{\bf{v}}_2}\end{array}\)

So,

\(p = \left( {\begin{array}{*{20}{c}}{32}\\{ - 14}\\0\\0\end{array}} \right)\), \({{\bf{v}}_1} = \left( {\begin{array}{*{20}{c}}{10}\\{ - 7}\\1\\0\end{array}} \right)\) and \({{\bf{v}}_2} = \left( {\begin{array}{*{20}{c}}{ - 4}\\1\\0\\1\end{array}} \right)\)

Therefore, \({H_1} \cap {H_2} = \left\{ {{\bf{x}}:{\bf{x}} = {\bf{p}} + {x_3}{{\bf{v}}_1} + {x_4}{{\bf{v}}_2}} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercise 10, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

10. \(\left( {\begin{array}{*{20}{c}}1\\2\\0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\2\\{ - 1}\\{ - 3}\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\3\\2\\7\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\2\\{ - 1}\\{ - 1}\end{array}} \right)\)

Question: 26. Let \({\rm{q}} = \left( \begin{array}{l}2\\3\end{array} \right)\), \({\rm{p}} = \left( \begin{array}{l}6\\1\end{array} \right)\). Find a hyperplane \(\left( {f:d} \right)\) that strictly separates \(B\left( {{\rm{q}},3} \right)\) and \(B\left( {{\rm{p}},1} \right)\).

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left) {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the plane in \({\mathbb{R}^{\bf{3}}}\) spanned by the rows of \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{4}}&{ - {\bf{5}}}\\{\bf{0}}&{ - {\bf{2}}}&{\bf{8}}\end{array}} \right)\). That is, \(H = {\bf{Row}}\,B\).

In Exercises 21-26, prove the given statement about subsets A and B of \({\mathbb{R}^n}\), or provide the required example in \({\mathbb{R}^2}\). A proof for an exercise may use results from earlier exercises (as well as theorems already available in the text).

22. If \(A \subset B\), then \(affA \subset aff B\).

Let \({\bf{x}}\left( t \right)\) be a B-spline in Exercise 2, with control points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\) , \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\).

a. Compute the tangent vector \({\bf{x}}'\left( t \right)\) and determine how the derivatives \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points. Give geometric descriptions of the directions of these tangent vectors. Explore what happens when both \({\bf{x}}'\left( 0 \right)\)and \({\bf{x}}'\left( 1 \right)\)equal 0. Justify your assertions.

b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_2}\) as the origin of the coordinate system.]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free