Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let S be a convex subset of \({\mathbb{R}^n}\) and suppose that \(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\) is a linear transformation. Prove that the set \(f\left( S \right) = \left\{ {f\left( {\bf{x}} \right):{\bf{x}} \in S} \right\}\) is a convex subset of \({\mathbb{R}^m}\).

Short Answer

Expert verified

\(f\left( S \right)\) is a convex subset of \({\mathbb{R}^m}\).

Step by step solution

01

Find the value of the function for two different constants

Let, \({\bf{q}} \in f\left( S \right)\), then for \({\bf{r}},{\bf{s}} \in S\)

\(f\left( {\bf{r}} \right) = {\bf{p}}\) and \(f\left( {\bf{s}} \right) = {\bf{q}}\)

02

 Step 2: Check that \(f\left( S \right)\) is convex

Check whether the line segment \(y = \left( {1 - t} \right){\bf{p}} + t{\bf{q}}\) is in \(f\left( S \right)\):

\(\begin{aligned}{}y &= \left( {1 - t} \right){\bf{p}} + t{\bf{q}}\\ &= \left( {1 - t} \right)f\left( {\bf{r}} \right) + tf\left( {\bf{s}} \right)\\ &= f\left( {1 - t} \right){\bf{r}} + tf\left( {\bf{s}} \right)\\ &= f\left\{ {\left( {1 - t} \right){\bf{r}} + t{\bf{s}}} \right\}\end{aligned}\)

As S is a convex set, \(\left( {1 - t} \right){\bf{r}} + t{\bf{s}}\)is also in S, therefore

\(f\left\{ {\left( {1 - t} \right){\bf{r}} + t{\bf{s}}} \right\} \in f\left( S \right)\)

So, \(f\left( S \right)\) is aconvex subset of \({\mathbb{R}^m}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A quartic Bézier curve is determined by five control points,

\({{\bf{p}}_{\bf{o}}}{\bf{,}}\,{\rm{ }}{{\bf{p}}_{\bf{1}}}\,{\bf{,}}{\rm{ }}{{\bf{p}}_{\bf{2}}}\,{\bf{,}}{\rm{ }}{{\bf{p}}_{\bf{3}}}\)and \({{\bf{p}}_4}\):

\({\bf{x}}\left( t \right) = {\left( {1 - t} \right)^4}{{\bf{p}}_0} + 4t{\left( {1 - t} \right)^3}{{\bf{p}}_1} + 6{t^2}{\left( {1 - t} \right)^2}{{\bf{p}}_2} + 4{t^3}\left( {1 - t} \right){{\bf{p}}_3} + {t^4}{{\bf{p}}_4}\)for \(0 \le t \le 1\)

Construct the quartic basis matrix \({M_B}\) for \({\bf{x}}\left( t \right)\).

Question: Let \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{\bf{0}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{1}}}\\{\bf{0}}\\{\bf{4}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{3}}}\\{\bf{5}}\\{\bf{3}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{9}}}\\{{\bf{10}}}\\{\bf{9}}\\{ - {\bf{13}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{2}}\\{\bf{8}}\\{\bf{5}}\end{array}} \right)\)

and \(S = \left\{ {{{\bf{v}}_1},\,\,{{\bf{v}}_2},\,{{\bf{v}}_3}} \right\}\). It can be shown that S is linearly independent.

a. Is \({{\bf{p}}_{\bf{1}}}\) is span S? Is \({{\bf{p}}_{\bf{1}}}\) is \({\bf{aff}}\,S\)?

b. Is \({{\bf{p}}_{\bf{2}}}\) is span S? Is \({{\bf{p}}_{\bf{2}}}\) is \({\bf{aff}}\,S\)?

c. Is \({{\bf{p}}_{\bf{3}}}\) is span S? Is \({{\bf{p}}_{\bf{3}}}\) is \({\bf{aff}}\,S\)?

Question: 15. Let \(A\) be an \({\rm{m}} \times {\rm{n}}\) matrix and, given \({\rm{b}}\) in \({\mathbb{R}^m}\), show that the set \(S\) of all solutions of \(A{\rm{x}} = {\rm{b}}\) is an affine subset of \({\mathbb{R}^n}\).

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

13. a. Use equation (12) to show that \({{\mathop{\rm q}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\).

b. Use equation (13) to show that \(8{{\mathop{\rm q}\nolimits} _2} = 8{{\mathop{\rm q}\nolimits} _3} + {{\mathop{\rm p}\nolimits} _0} + {{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _2} - {{\mathop{\rm p}\nolimits} _3}\).

c. Use part (b), equation (8), and part (a) to show that \({{\mathop{\rm q}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _1}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\). That is, \({{\mathop{\rm q}\nolimits} _2} = \frac{1}{2}\left( {{{\mathop{\rm q}\nolimits} _1} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the column space of the matrix \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{ - {\bf{4}}}&{\bf{2}}\\{\bf{7}}&{ - {\bf{6}}}\end{array}} \right)\). That is, \(H = {\bf{Col}}\,B\).(Hint: How is \({\bf{Col}}\,B\) related to Nul \({B^T}\)? See section 6.1)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free