Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Let \({{\bf{a}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{1}}}\\{\bf{5}}\end{array}} \right)\), \({{\bf{a}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right)\), \({{\bf{a}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{6}}\\{\bf{0}}\end{array}} \right)\), \({{\bf{b}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{5}}\\{ - {\bf{1}}}\end{array}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{ - {\bf{2}}}\end{array}} \right)\),\({{\bf{b}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{2}}\\{\bf{1}}\end{array}} \right)\) and \({\bf{n}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right)\), and let \(A = \left\{ {{{\bf{a}}_{\bf{1}}},{{\bf{a}}_{\bf{2}}},{{\bf{a}}_{\bf{3}}}} \right\}\) and \(B = \left\{ {{{\bf{b}}_{\bf{1}}},{{\bf{b}}_{\bf{2}}},{{\bf{b}}_{\bf{3}}}} \right\}\). Find a hyperplane H with normal n that separates A and B. Is there a hyperplane parallel to H that strictly separates A and B?

Short Answer

Expert verified

\(\left( {{H_0}:f} \right) = 3{x_1} + {x_2} - 2{x_3}\)

Hyperplane H does not separate A and B.

Step by step solution

01

Solve the equation \(n{\bf{v}} = {\bf{0}}\)

Consider \({\bf{v}} = \left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right)\).

Let \({H_0}\) be the origin that contains the normal vector, and then it can be written as shown below:

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}3&1&{ - 2}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = 0\\3{x_1} + {x_2} - 2{x_3} = 0\end{array}\)

So, it can be written as \(\left( {{H_0}:f} \right) = 3{x_1} + {x_2} - 2{x_3}\).

02

Find the value of d

As hyperplaneis passing through 6 nonzero vectors. So, the value of d is shown below:

\(d = 6\)

03

Find the dot products of \({\bf{n}}\) with given vectors

The dot product of \(n\) and \({{\bf{a}}_1}\) is:

\(\begin{array}{c}f\left( {{{\bf{a}}_1}} \right) = n \cdot {{\bf{a}}_1}\\ = 3\left( 2 \right) + \left( { - 1} \right) - 2\left( 5 \right)\\ = - 5\end{array}\)

The dot product of \(n\) and \({{\bf{a}}_2}\) is:

\(\begin{array}{c}f\left( {{{\bf{a}}_2}} \right) = n \cdot {{\bf{a}}_2}\\ = 3\left( 3 \right) + \left( 1 \right) - 2\left( 3 \right)\\ = 4\end{array}\)

The dot product of \(n\) and \({{\bf{a}}_3}\) is:

\(\begin{array}{c}f\left( {{{\bf{a}}_3}} \right) = n \cdot {{\bf{a}}_3}\\ = 3\left( { - 1} \right) + \left( 6 \right) - 2\left( 0 \right)\\ = 3\end{array}\)

The dot product of \(n\) and \({{\bf{b}}_1}\) is:

\(\begin{array}{c}f\left( {{{\bf{b}}_1}} \right) = n \cdot {{\bf{b}}_1}\\ = 3\left( 0 \right) + \left( 5 \right) - 2\left( { - 1} \right)\\ = 7\end{array}\)

The dot product of \(n\) and \({{\bf{b}}_2}\) is:

\(\begin{array}{c}f\left( {{{\bf{b}}_2}} \right) = n \cdot {{\bf{b}}_2}\\ = 3\left( 1 \right) + \left( { - 3} \right) - 2\left( { - 2} \right)\\ = 4\end{array}\)

The dot product of \(n\) and \({{\bf{b}}_3}\) is:

\(\begin{array}{c}f\left( {{{\bf{b}}_3}} \right) = n \cdot {{\bf{b}}_3}\\ = 3\left( 2 \right) + \left( 2 \right) - 2\left( 1 \right)\\ = 6\end{array}\)

It can be observed from the above equations \(f\left( A \right) < 4\) and \(f\left( B \right) > 4\), the parallel hyperplane \(\left( {f:4} \right)\) strictly separates A and B, then by theorem 13 H does not separate A and B.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercise 6, determine whether or not each set is compact and whether or not it is convex.

6. Use the sets from Exercise 4.


Prove Theorem 6 for an affinely independent set\(S = \left\{ {{v_1},...,{v_k}} \right\}\)in\({\mathbb{R}^{\bf{n}}}\). [Hint:One method is to mimic the proof of Theorem 7 in Section 4.4.]

Repeat Exercise 25 with\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\{\bf{2}}\\{ - {\bf{4}}}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{8}}\\{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{{\bf{10}}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{8}}\end{array}} \right]\), and \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{.{\bf{9}}}\\{{\bf{2}}.{\bf{0}}}\\{ - {\bf{3}}.{\bf{7}}}\end{array}} \right]\).

Question: In Exercises 21 and 22, mark each statement True or False. Justify each answer.

22 a. If \(d\)is a real number and \(f\) is a nonzero linear functional defined on \({\mathbb{R}^n}\) , then \(f:d\)is a hyperplane in \({\mathbb{R}^n}\) .

b. Given any vector n and any real number \(d\), the set \(\left\{ {x:n \cdot x = d} \right\}\) is a hyperplane.

c. If \(A\) and \(B\) are nonempty disjoint sets such that \(A\) is compact and \(B\) is closed, then there exists a hyperplane that strictly separates \(A\) and \(B\).

d. If there exists a hyperplane \(H\) such that \(H\) does not strictly separate two sets \(A\) and \(B\), then \(\left( {{\rm{conv}}\,A} \right) \cap \left( {{\rm{conv}}\,B} \right) \ne \emptyset \) and \(B\).

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

3.\(\left( {\begin{aligned}{{}}1\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 2}\\{ - 4}\\8\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\{ - 1}\\{11}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{15}\\{ - 9}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free