Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 11 and 12, mark each statement True or False. Justify each answer.

12.a. The essential properties of Bezier curves are preserved under the action of linear transformations, but not translations.

b. When two Bezier curves \({\mathop{\rm x}\nolimits} \left( t \right)\) and \(y\left( t \right)\) are joined at the point where \({\mathop{\rm x}\nolimits} \left( 1 \right) = y\left( 0 \right)\), the combined curve has \({G^0}\) continuity at that point.

c. The Bezier basis matrix is a matrix whose columns are the control points of the curve.

Short Answer

Expert verified
  1. The statement is False.
  2. The statement is True.
  3. The statement is False.

Step by step solution

01

Determine whether the given statement is True or False

a)

Bezier curvesare useful in computer graphics because their essential properties are preserved under linear transformations and translations.

Thus, the given statement (a) is False.

02

Determine whether the given statement is True or False

b)

The combined curve is said to have\({G^0}\) continuity because the two segments join at \({{\mathop{\rm p}\nolimits} _2}\).

Thus, the given statement (b) is True.

03

Determine whether the given statement is True or False

c)

The \(4 \times 4\) matrix of polynomial coefficients is the Bezier basis matrix \({M_B}\).

Thus, the given statement (c) is False.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) be cubic Bézier curves with control points \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}{{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\)and \(\left\{ {{{\bf{p}}_{\bf{3}}}{\bf{,}}{{\bf{p}}_{\bf{4}}}{\bf{,}}{{\bf{p}}_{\bf{5}}}{\bf{,}}{{\bf{p}}_{\bf{6}}}} \right\}\) respectively, so that \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) are joined at \({{\bf{p}}_3}\) . The following questions refer to the curve consisting of \({\bf{x}}\left( t \right)\) followed by \(y\left( t \right)\). For simplicity, assume that the curve is in \({\mathbb{R}^2}\).

a. What condition on the control points will guarantee that the curve has \({C^1}\) continuity at \({{\bf{p}}_3}\) ? Justify your answer.

b. What happens when \({\bf{x'}}\left( 1 \right)\) and \({\bf{y'}}\left( 1 \right)\) are both the zero vector?

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the plane in \({\mathbb{R}^{\bf{3}}}\) spanned by the rows of \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{3}}&{\bf{5}}\\{\bf{0}}&{\bf{2}}&{\bf{4}}\end{array}} \right)\). That is, \(H = {\bf{Row}}\,B\). (Hint: How is H is related to Nul B?see section 6.1.)

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

13. a. Use equation (12) to show that \({{\mathop{\rm q}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\).

b. Use equation (13) to show that \(8{{\mathop{\rm q}\nolimits} _2} = 8{{\mathop{\rm q}\nolimits} _3} + {{\mathop{\rm p}\nolimits} _0} + {{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _2} - {{\mathop{\rm p}\nolimits} _3}\).

c. Use part (b), equation (8), and part (a) to show that \({{\mathop{\rm q}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _1}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\). That is, \({{\mathop{\rm q}\nolimits} _2} = \frac{1}{2}\left( {{{\mathop{\rm q}\nolimits} _1} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{2}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{2}}}\\{\bf{2}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{\bf{4}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{4}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{7}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{\bf{5}}\\{\bf{3}}\end{aligned}} \right)\)

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left) {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the plane in \({\mathbb{R}^{\bf{3}}}\) spanned by the rows of \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{4}}&{ - {\bf{5}}}\\{\bf{0}}&{ - {\bf{2}}}&{\bf{8}}\end{array}} \right)\). That is, \(H = {\bf{Row}}\,B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free