Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Let \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\), \({\bf{n}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{5}}\\{ - {\bf{1}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{1}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{0}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{4}}\\{\bf{0}}\\{\bf{4}}\end{array}} \right)\), and let H be the hyperplane in\({\mathbb{R}^{\bf{4}}}\) with normal n and passing through p. Which of the points \({{\bf{v}}_{\bf{1}}}\), \({{\bf{v}}_{\bf{2}}}\), and \({{\bf{v}}_{\bf{3}}}\) are on the same side of H as the origin, and which are not?

Short Answer

Expert verified

The point \({{\bf{v}}_1}\) is outside the origin, \({{\bf{v}}_2}\) lies on the same side of the hyperplane, and \({{\bf{v}}_3}\) lies on the hyperplane.

Step by step solution

01

Solve the equation \(n{\bf{v}} = {\bf{0}}\)

Consider \({\bf{v}} = \left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right)\).

Let \({H_0}\) be the origin that contains the normal vector, and then it can be written as shown below:

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}2&1&5&{ - 1}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right) = 0\\2{x_1} + {x_2} + 5{x_3} - {x_4} = 0\end{array}\)

So, it can be written as \(\left( {{H_0}:f} \right) = 2{x_1} + {x_2} + 5{x_3} - {x_4}\).

02

Find the value of d

As hyperplaneis passing through the point p as shown below:

\(\begin{array}{c}d = f\left( p \right)\\ = 2\left( 1 \right) + \left( { - 3} \right) + 5\left( 1 \right) - 2\\ = 2\end{array}\)

So, \(d = 2\).

03

Find the dot products of \({\bf{n}}\) with \({{\bf{v}}_i}\)

The dot product of \(n\) and \({v_1}\) is:

\(\begin{array}{c}f\left( {{{\bf{v}}_1}} \right) = n \cdot {{\bf{v}}_1}\\ = 2\left( 0 \right) + \left( 1 \right) + 5\left( 1 \right) - 1\\ = 5\end{array}\)

As the dot product is more significant than d, so \({{\bf{v}}_1}\) is outside the origin.

The dot product of \(n\) and \({{\bf{v}}_2}\) is:

\(\begin{array}{c}f\left( {{{\bf{v}}_2}} \right) = n \cdot {{\bf{v}}_2}\\ = 2\left( { - 2} \right) + \left( 0 \right) + 5\left( 1 \right) - 3\\ = - 2\end{array}\)

The value is lesser than d, so \({{\bf{v}}_2}\) lies the same side of the hyperplane.

The dot product of \(n\) and \({{\bf{v}}_3}\) is:

\(\begin{array}{c}f\left( {{{\bf{v}}_3}} \right) = n \cdot {{\bf{v}}_3}\\ = 2\left( 1 \right) + \left( 4 \right) + 5\left( 0 \right) - 4\\ = 2\end{array}\)

The value is equal to d, so \({{\bf{v}}_3}\) lies on the hyperplane.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

9.

a. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1} - {{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _2},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _2}} \right\}\) is linearly dependent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent. (Read this carefully.)

b. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set of homogeneous forms \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent.

c. A finite set of points \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is affinely dependent if there exist real numbers \({c_1},...,{c_k}\) , not all zero, such that \({c_1} + ... + {c_k} = 1\) and \({c_1}{{\mathop{\rm v}\nolimits} _1} + ... + {c_k}{{\mathop{\rm v}\nolimits} _k} = 0\).

d. If \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely independent set in \({\mathbb{R}^n}\) and if p in \({\mathbb{R}^n}\) has a negative barycentric coordinate determined by S, then p is not in \({\mathop{\rm aff}\nolimits} S\).

e.

If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},a,\) and \(b\) are in \({\mathbb{R}^3}\) and if ray \({\mathop{\rm a}\nolimits} + t{\mathop{\rm b}\nolimits} \) for \(t \ge 0\) intersects the triangle with vertices \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},\) and \({{\mathop{\rm v}\nolimits} _3}\) then the barycentric coordinates of the intersection points are all nonnegative.

Let \({\bf{x}}\left( t \right)\) be a B-spline in Exercise 2, with control points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\) , \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\).

a. Compute the tangent vector \({\bf{x}}'\left( t \right)\) and determine how the derivatives \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points. Give geometric descriptions of the directions of these tangent vectors. Explore what happens when both \({\bf{x}}'\left( 0 \right)\)and \({\bf{x}}'\left( 1 \right)\)equal 0. Justify your assertions.

b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_2}\) as the origin of the coordinate system.]

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

6.\(\left( {\begin{aligned}{{}}1\\3\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{ - 1}\\{ - 2}\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\5\\2\end{aligned}} \right),\left( {\begin{aligned}{{}}3\\5\\0\end{aligned}} \right)\)

Explain why a cubic Bezier curve is completely determined by \({\mathop{\rm x}\nolimits} \left( 0 \right)\), \(x'\left( 0 \right)\), \({\mathop{\rm x}\nolimits} \left( 1 \right)\), and \(x'\left( 1 \right)\).

In Exercises 11 and 12, mark each statement True or False. Justify each answer.

12.a. The essential properties of Bezier curves are preserved under the action of linear transformations, but not translations.

b. When two Bezier curves \({\mathop{\rm x}\nolimits} \left( t \right)\) and \(y\left( t \right)\) are joined at the point where \({\mathop{\rm x}\nolimits} \left( 1 \right) = y\left( 0 \right)\), the combined curve has \({G^0}\) continuity at that point.

c. The Bezier basis matrix is a matrix whose columns are the control points of the curve.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free