Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Explain why any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.

Short Answer

Expert verified

Any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.

Step by step solution

01

State the condition for affinely dependence

The set is said to be affinely dependent if the set \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},...,{{\bf{v}}_p}} \right\}\) in the dimension\({\mathbb{R}^n}\) exists such that for non-zero scalars\({c_1},{c_2},...,{c_p}\), the sum of scalars is zero i.e.\({c_1} + {c_2} + ... + {c_p} = 0\), and \({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + ... + {c_p}{{\bf{v}}_p} = 0\).

02

Show affinely dependence

Consider the set of five points \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3},{{\bf{v}}_4},{{\bf{v}}_5}} \right\}\).

Let \(\left\{ {{{\bf{v}}_2} - {{\bf{v}}_1},{{\bf{v}}_3} - {{\bf{v}}_1},{{\bf{v}}_4} - {{\bf{v}}_1},{{\bf{v}}_5} - {{\bf{v}}_1}} \right\}\) be the set of vectors in \({\mathbb{R}^3}\).This new set of four points must be linearly dependent when a set of vectors is translated by eliminating the first point or any other point.

From \({\mathbb{R}^3}\), the number of entries is 3. From the above-considered set of points, the number of vectors is 4. That is, \(n = 3\), and \(p = 4\).

Here, the set contains more vectors or points than the number of entries. So,\(p > n\)and the original set of five points \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3},{{\bf{v}}_4},{{\bf{v}}_5}} \right\}\) is affinely dependent.

Therefore, any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercise 6, determine whether or not each set is compact and whether or not it is convex.

6. Use the sets from Exercise 4.


Prove Theorem 6 for an affinely independent set\(S = \left\{ {{v_1},...,{v_k}} \right\}\)in\({\mathbb{R}^{\bf{n}}}\). [Hint:One method is to mimic the proof of Theorem 7 in Section 4.4.]

Let \({\bf{x}}\left( t \right)\) be a cubic Bézier curve determined by points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\), \({{\bf{p}}_2}\), and \({{\bf{p}}_3}\).

a. Compute the tangent vector \({\bf{x}}'\left( t \right)\). Determine how \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points, and give geometric descriptions of the directions of these tangent vectors. Is it possible to have \({\bf{x}}'\left( 1 \right) = 0\)?

b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_1}\) as the origin of the coordinate system.]

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice problem 2.) If so, construct an affine dependence relation for the points.

2.\(\left( {\begin{aligned}{{}}2\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}5\\4\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 3}\\{ - 2}\end{aligned}} \right)\)

Let \({\bf{x}}\left( t \right)\) be a B-spline in Exercise 2, with control points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\) , \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\).

a. Compute the tangent vector \({\bf{x}}'\left( t \right)\) and determine how the derivatives \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points. Give geometric descriptions of the directions of these tangent vectors. Explore what happens when both \({\bf{x}}'\left( 0 \right)\)and \({\bf{x}}'\left( 1 \right)\)equal 0. Justify your assertions.

b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_2}\) as the origin of the coordinate system.]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free