Chapter 8: Q11E (page 437)
Explain why any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.
Short Answer
Any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.
Chapter 8: Q11E (page 437)
Explain why any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.
Any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: In Exercise 6, determine whether or not each set is compact and whether or not it is convex.
6. Use the sets from Exercise 4.
Prove Theorem 6 for an affinely independent set\(S = \left\{ {{v_1},...,{v_k}} \right\}\)in\({\mathbb{R}^{\bf{n}}}\). [Hint:One method is to mimic the proof of Theorem 7 in Section 4.4.]
Let \({\bf{x}}\left( t \right)\) be a cubic Bézier curve determined by points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\), \({{\bf{p}}_2}\), and \({{\bf{p}}_3}\).
a. Compute the tangent vector \({\bf{x}}'\left( t \right)\). Determine how \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points, and give geometric descriptions of the directions of these tangent vectors. Is it possible to have \({\bf{x}}'\left( 1 \right) = 0\)?
b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_1}\) as the origin of the coordinate system.]
In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice problem 2.) If so, construct an affine dependence relation for the points.
2.\(\left( {\begin{aligned}{{}}2\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}5\\4\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 3}\\{ - 2}\end{aligned}} \right)\)
Let \({\bf{x}}\left( t \right)\) be a B-spline in Exercise 2, with control points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\) , \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\).
a. Compute the tangent vector \({\bf{x}}'\left( t \right)\) and determine how the derivatives \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points. Give geometric descriptions of the directions of these tangent vectors. Explore what happens when both \({\bf{x}}'\left( 0 \right)\)and \({\bf{x}}'\left( 1 \right)\)equal 0. Justify your assertions.
b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_2}\) as the origin of the coordinate system.]
What do you think about this solution?
We value your feedback to improve our textbook solutions.