Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Repeat Exercise 9 for the points \({{\bf{q}}_{\bf{1}}}\),….\({{\bf{q}}_{\bf{5}}}\) whose barycentric coordinates with respect to S are given by \(\left( {\frac{{\bf{1}}}{{\bf{8}}},\frac{{\bf{1}}}{{\bf{4}}},\frac{{\bf{1}}}{{\bf{8}}},\frac{{\bf{1}}}{{\bf{2}}}} \right)\), \(\left( {\frac{{\bf{3}}}{{\bf{4}}}, - \frac{{\bf{1}}}{{\bf{4}}},{\bf{0}},\frac{{\bf{1}}}{{\bf{2}}}} \right)\),\(\left( {{\bf{0}},\frac{{\bf{3}}}{{\bf{4}}},\frac{{\bf{1}}}{{\bf{4}}},{\bf{0}}} \right)\),\(\left( {{\bf{0}}, - {\bf{2}},{\bf{0}},{\bf{3}}} \right)\), and \(\left( {\frac{{\bf{1}}}{{\bf{3}}},\frac{{\bf{1}}}{{\bf{3}}},\frac{{\bf{1}}}{{\bf{3}}},{\bf{0}}} \right)\), respectively.

Short Answer

Expert verified

\({{\bf{q}}_1}\) is inside the tetrahedron \({\rm{conv}}\,S\), \({{\bf{q}}_2}\) is outside \({\rm{conv}}\,S\), \({{\bf{q}}_3}\) is the edge between \({{\bf{v}}_2}\) and \({{\bf{v}}_3}\). \({{\bf{q}}_4}\) is outside the tetrahedron and \({{\bf{q}}_5}\) is on the face with vertices \({{\bf{v}}_1}\), \({{\bf{v}}_2}\), and \({{\bf{v}}_3}\).

Step by step solution

01

Check for the first coordinate

The barycentric coordinateof the point \({{\bf{q}}_1}\) are all positive, so the point \({{\bf{q}}_1}\) is inside the tetrahedron convex S.

02

Check for the second coordinate

The barycentric coordinate of the point \({{\bf{q}}_2}\)is not positive, so the point \({{\bf{q}}_2}\) is outside the tetrahedron convexS.

03

Check for the third coordinate

The first and fourth barycentric coordinate of the point \({{\bf{q}}_3}\)is zero, representing the edge between \({{\bf{v}}_2}\) and \({{\bf{v}}_3}\).

04

Check for the fourth coordinate

The barycentric coordinate of the point \({{\bf{q}}_4}\)is not positive, so the point \({{\bf{q}}_4}\) is outside the tetrahedron convex S.

05

Check for the fifth coordinate

The point \({{\bf{q}}_5}\) is a convex combination of vectors \({{\bf{v}}_1}\), \({{\bf{v}}_2}\), and \({{\bf{v}}_3}\), hence \({{\bf{q}}_5}\) lies on face containing the vertices \({{\bf{v}}_1}\), \({{\bf{v}}_2}\), and \({{\bf{v}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

14.a. Justify each equal sign:

\(3\left( {{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2}} \right) = z'\left( 1 \right) = .5x'\left( 1 \right) = \frac{3}{2}\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\)

b. Show that \({{\mathop{\rm r}\nolimits} _2}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _2}\) to \({{\mathop{\rm p}\nolimits} _3}\).

c. Justify each equal sign: \(3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) = z'\left( 0 \right) = .5x'\left( {.5} \right)\).

d. Use part (c) to show that \(8{{\mathop{\rm r}\nolimits} _1} = - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + 8{{\mathop{\rm r}\nolimits} _0}\).

e. Use part (d) equation (8), and part (a) to show that \({{\mathop{\rm r}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm r}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\). That is, \({{\mathop{\rm r}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm r}\nolimits} _2} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

Show that a set\(\left\{ {{{\bf{v}}_{\bf{1}}},...,{{\bf{v}}_p}} \right\}\)in\({\mathbb{R}^{\bf{n}}}\)is affinely dependent when \(p \ge n + 2\).

Let\(T\)be a tetrahedron in “standard” position, with three edges along the three positive coordinate axes in\({\mathbb{R}^3}\), and suppose the vertices are\(a{{\bf{e}}_1}\),\(b{{\bf{e}}_2}\),\(c{{\bf{e}}_{\bf{3}}}\), and 0, where\(\left[ {\begin{array}{*{20}{c}}{{{\bf{e}}_1}}&{{{\bf{e}}_2}}&{{{\bf{e}}_3}}\end{array}} \right] = {I_3}\). Find formulas for the barycentric coordinates of an arbitrary point\({\bf{p}}\)in\({\mathbb{R}^3}\).

The conditions for affine dependence are stronger than those for linear dependence, so an affinely dependent set is automatically linearly dependent. Also, a linearly independent set cannot be affinely dependent and therefore must be affinely independent. Construct two linearly dependent indexed sets\({S_{\bf{1}}}\)and\({S_{\bf{2}}}\)in\({\mathbb{R}^2}\)such that\({S_{\bf{1}}}\)is affinely dependent and\({S_{\bf{2}}}\)is affinely independent. In each case, the set should contain either one, two, or three nonzero points.

In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{aligned}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{aligned}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each of the given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{8}}\\{\bf{4}}\end{aligned}} \right)\)

b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{6}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right)\)

c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{ - {\bf{1}}}\\{ - {\bf{5}}}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free