Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercise 10, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

10. \(\left( {\begin{array}{*{20}{c}}1\\2\\0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\2\\{ - 1}\\{ - 3}\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\3\\2\\7\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\2\\{ - 1}\\{ - 1}\end{array}} \right)\)

Short Answer

Expert verified
  1. The normal vector is \(n = \left( {\begin{array}{*{20}{c}}{ - 2}\\3\\{ - 5}\\1\end{array}} \right)\) or a multiple
  2. The linear functional f is \(f\left( x \right) = - 2{x_1} + 3{x_2} - 5{x_3} + {x_4}\) , and the real number is \(d = 4\).

Step by step solution

01

Write the given data

Let the vectors are \({v_1} = \left( {\begin{array}{*{20}{c}}1\\2\\0\\0\end{array}} \right)\), \({v_2} = \left( {\begin{array}{*{20}{c}}2\\2\\{ - 1}\\{ - 3}\end{array}} \right)\), \({v_3} = \left( {\begin{array}{*{20}{c}}1\\3\\2\\7\end{array}} \right)\)and \({v_4} = \left( {\begin{array}{*{20}{c}}3\\2\\{ - 1}\\{ - 1}\end{array}} \right)\).

Then, \({v_2} - {v_1} = \left( {\begin{array}{*{20}{c}}1\\0\\{ - 1}\\{ - 3}\end{array}} \right),{v_3} - {v_1} = \left( {\begin{array}{*{20}{c}}0\\1\\2\\7\end{array}} \right),\) and \({v_4} - {v_1} = \left( {\begin{array}{*{20}{c}}2\\0\\{ - 1}\\{ - 1}\end{array}} \right)\).

02

Use the cross product to compute n

(a)

\(\begin{array}{c}n = \left( {{v_2} - {v_1}} \right) \times \left( {{v_3} - {v_1}} \right) \times \left( {{v_4} - {v_1}} \right)\\ = \left| {\begin{array}{*{20}{c}}i&j&k&l\\1&0&{ - 1}&{ - 3}\\0&1&2&7\\2&0&{ - 1}&{ - 1}\end{array}} \right|\\ = \left| {\begin{array}{*{20}{c}}0&{ - 1}&{ - 3}\\1&2&7\\0&{ - 1}&{ - 1}\end{array}} \right|i - \left| {\begin{array}{*{20}{c}}1&{ - 1}&{ - 3}\\0&2&7\\2&{ - 1}&{ - 1}\end{array}} \right|j + \left| {\begin{array}{*{20}{c}}1&0&{ - 3}\\0&1&7\\2&0&{ - 1}\end{array}} \right|k - \left| {\begin{array}{*{20}{c}}1&0&{ - 1}\\0&1&2\\2&0&{ - 1}\end{array}} \right|l\\ = - 2i + 3j - 5k + l\end{array}\)

Thus, the normal vector is \(n = \left( {\begin{array}{*{20}{c}}{ - 2}\\3\\{ - 5}\\1\end{array}} \right)\).

03

Find a linear functional f and a real number d

(b)

Using part (a), the linear functional f can be obtained as shown below:

\(\begin{array}{c}f\left( x \right) = n \cdot x\\ = \left( {\begin{array}{*{20}{c}}{ - 2}&3&{ - 5}&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right)\\f\left( x \right) = - 2{x_1} + 3{x_2} - 5{x_3} + {x_4}\end{array}\)

Note that, \({v_i}\) in \(H = \left( {f:d} \right)\) such that \(f\left( {{v_i}} \right) = d\) for \(i = 1,2,3,4\).

\(\begin{array}{c}d = f\left( {{v_1}} \right)\\ = f\left( {1,2,0,0} \right)\\ = - 2\left( 1 \right) + 3\left( 2 \right) + 0 + 0\\ = - 2 + 6\\d = 4\end{array}\)

Thus, the linear functional f is \(f\left( x \right) = - 2{x_1} + 3{x_2} - 5{x_3} + {x_4}\) , and the real number is \(d = 4\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Let \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{3}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{ - {\bf{1}}}\\{\bf{3}}\end{array}} \right)\), \({{\bf{n}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{4}}\\{\bf{2}}\end{array}} \right)\), and \({{\bf{n}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{3}}\\{\bf{1}}\\{\bf{5}}\end{array}} \right)\), let \({H_{\bf{1}}}\) be the hyperplane in \({\mathbb{R}^{\bf{4}}}\) through \({{\bf{p}}_{\bf{1}}}\) with normal \({{\bf{n}}_{\bf{1}}}\), and let \({H_{\bf{2}}}\) be the hyperplane through \({{\bf{p}}_{\bf{2}}}\) with normal \({{\bf{n}}_{\bf{2}}}\). Give an explicit description of \({H_{\bf{1}}} \cap {H_{\bf{2}}}\). (Hint: Find a point p in \({H_{\bf{1}}} \cap {H_{\bf{2}}}\) and two linearly independent vectors \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) that span a subspace parallel to the 2-dimensional flat \({H_{\bf{1}}} \cap {H_{\bf{2}}}\).)

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

1.\(\left( {\begin{aligned}{{}}3\\{ - 3}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\6\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\0\end{aligned}} \right)\)

Question: Suppose that the solutions of an equation \(A{\bf{x}} = {\bf{b}}\) are all of the form \({\bf{x}} = {x_{\bf{3}}}{\bf{u}} + {\bf{p}}\), where \({\bf{u}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right)\) and \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{\bf{4}}\end{array}} \right)\). Find points \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) such that the solution set of \(A{\bf{x}} = {\bf{b}}\) is \({\bf{aff}}\left\{ {{{\bf{v}}_{\bf{1}}},\,{{\bf{v}}_{\bf{2}}}} \right\}\).

Question 4: Repeat Exercise 2 where \(m\) is the minimum value of \(f\) on \(S\) instead of the maximum value.

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the plane in \({\mathbb{R}^{\bf{3}}}\) spanned by the rows of \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{3}}&{\bf{5}}\\{\bf{0}}&{\bf{2}}&{\bf{4}}\end{array}} \right)\). That is, \(H = {\bf{Row}}\,B\). (Hint: How is H is related to Nul B?see section 6.1.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free