Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) be cubic Bézier curves with control points \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}{{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\)and \(\left\{ {{{\bf{p}}_{\bf{3}}}{\bf{,}}{{\bf{p}}_{\bf{4}}}{\bf{,}}{{\bf{p}}_{\bf{5}}}{\bf{,}}{{\bf{p}}_{\bf{6}}}} \right\}\) respectively, so that \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) are joined at \({{\bf{p}}_3}\) . The following questions refer to the curve consisting of \({\bf{x}}\left( t \right)\) followed by \(y\left( t \right)\). For simplicity, assume that the curve is in \({\mathbb{R}^2}\).

a. What condition on the control points will guarantee that the curve has \({C^1}\) continuity at \({{\bf{p}}_3}\) ? Justify your answer.

b. What happens when \({\bf{x'}}\left( 1 \right)\) and \({\bf{y'}}\left( 1 \right)\) are both the zero vector?

Short Answer

Expert verified

a) The \({C^1}\) continuity is \({{\bf{p}}_3} = \frac{{\left( {{{\bf{p}}_4} + {{\bf{p}}_2}} \right)}}{2}\), and\({{\bf{p}}_3}\)is the mid-point of the line segment\({{\bf{p}}_2}\)to\({{\bf{p}}_4}\).

b) The line joining \({{\bf{p}}_4}\) and \({{\bf{p}}_2}\) is point \({{\bf{p}}_3}\) only.

Step by step solution

01

Apply the standard parameterization on \(\left\{ {{{\bf{p}}_{\bf{0}}}{\bf{,}}{{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\)

For the points \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}\,{{\bf{p}}_{\bf{1}}}{\bf{,}}\,{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\), \({\rm{x}}\left( t \right)\) has the standard parameterization as \({\bf{x}}\left( t \right) = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\bf{p}}_o} + \left( {3t - 6{t^2} + 3{t^3}} \right){{\bf{p}}_1} + \left( {3{t^2} - 3{t^3}} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_{\bf{3}}}\).

02

Find the value of \({\bf{x'}}\left( 1 \right)\)

\({\bf{x'}}\left( t \right) = \left( { - 3t + 6t - 3{t^2}} \right){{\bf{p}}_o} + \left( {3 - 12t + 9{t^2}} \right){{\bf{p}}_1} + \left( {6t - 9{t^2}} \right){{\bf{p}}_2} + 3{t^2}{{\bf{p}}_3}\).

So, \(x'\left( 1 \right) = - 3{p_2} + 3{p_3}\) and \(x'\left( 0 \right) = - 3{p_0} + 3{p_1}\).

03

Use \({\bf{x'}}\left( 0 \right)\) to find \({\bf{y'}}\left( 0 \right)\) in accordance with its control points

\(\left\{ {{{\bf{p}}_{\bf{3}}}{\bf{,}}{{\bf{p}}_{\bf{4}}}{\bf{,}}{{\bf{p}}_{\bf{5}}}{\bf{,}}{{\bf{p}}_{\bf{6}}}} \right\}\)

Replace \({{\bf{p}}_0}\) by \({{\bf{p}}_3}\) and \({{\bf{p}}_1}\) by \({{\bf{p}}_4}\).

So, \({\bf{y}}'\left( 0 \right) = - 3{{\bf{p}}_3} + 3{{\bf{p}}_4}\).

04

Apply \({C^1}\) continuity rule

According to \({C^1}\) continuity, \({\bf{x}}'\left( 0 \right) = {\bf{y}}'\left( 0 \right)\), that is shown below:

\(\begin{array}{c} - 3{{\bf{p}}_3} + 3{{\bf{p}}_4} = - 3{{\bf{p}}_0} + 3{{\bf{p}}_1}\\{{\bf{p}}_3} = \frac{{\left( {{{\bf{p}}_4} + {{\bf{p}}_2}} \right)}}{2}\end{array}\)

05

Draw a conclusion

It is concluded that\({{\bf{p}}_3}\)is the midpoint of the line joining\({{\bf{p}}_4}\)and\({{\bf{p}}_2}\)as\({{\bf{p}}_3} = \frac{{\left( {{{\bf{p}}_4} + {{\bf{p}}_2}} \right)}}{2}\), which is the required condition of part (a).

If\({\bf{x}}'\left( 1 \right) = {\bf{y}}'\left( 0 \right) = 0\), \({{\bf{p}}_2} = {{\bf{p}}_3} = {{\bf{p}}_4}\), as\({\bf{x'}}\left( 1 \right) = - 3{{\bf{p}}_2} + 3{{\bf{p}}_3}\), and \({\bf{y'}}\left( 0 \right) = - 3{{\bf{p}}_3} + 3{{\bf{p}}_4}\).

This concludes that the line joining \({{\bf{p}}_4}\) and \({{\bf{p}}_2}\) is \({{\bf{p}}_3}\) only, which is the required condition of part (b).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

15. Sometimes only one-half of a Bezier curve needs further subdividing. For example, subdivision of the “left” side is accomplished with parts (a) and (c) of Exercise 13 and equation (8). When both halves of the curve \({\mathop{\rm x}\nolimits} \left( t \right)\) are divided, it is possible to organize calculations efficiently to calculate both left and right control points concurrently, without using equation (8) directly.

a. Show that the tangent vector \(y'\left( 1 \right)\) and \(z'\left( 0 \right)\) are equal.

b. Use part (a) to show that \({{\mathop{\rm q}\nolimits} _3}\) (which equals \({{\mathop{\rm r}\nolimits} _0}\)) is the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _2}\) to \({{\mathop{\rm r}\nolimits} _1}\).

c. Using part (b) and the results of Exercises 13 and 14, write an algorithm that computes the control points for both \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) in an efficient manner. The only operations needed are sums and division by 2.

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{0}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{6}}}\\{\bf{7}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{\bf{3}}\\{\bf{1}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{4}}\\{ - {\bf{4}}}\end{aligned}} \right)\)

Use only the definition of affine dependence to show that anindexed set \(\left\{ {{v_1},{v_2}} \right\}\) in \({\mathbb{R}^{\bf{n}}}\) is affinely dependent if and only if \({v_1} = {v_2}\).

Question: 15. Let \(A\) be an \({\rm{m}} \times {\rm{n}}\) matrix and, given \({\rm{b}}\) in \({\mathbb{R}^m}\), show that the set \(S\) of all solutions of \(A{\rm{x}} = {\rm{b}}\) is an affine subset of \({\mathbb{R}^n}\).

Question: 17. Choose a set \(S\) of three points such that aff \(S\) is the plane in \({\mathbb{R}^3}\) whose equation is \({x_3} = 5\). Justify your work.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free