Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The parametric vector form of a B-spline curve was defined in the Practice Problems as

\({\bf{x}}\left( t \right) = \frac{1}{6}\left[ \begin{array}{l}{\left( {1 - t} \right)^3}{{\bf{p}}_o} + \left( {3t{{\left( {1 - t} \right)}^2} - 3t + 4} \right){{\bf{p}}_1}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left( {3{t^2}\left( {1 - t} \right) + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}\end{array} \right]\;\), for \(0 \le t \le 1\) where \({{\bf{p}}_o}\) , \({{\bf{p}}_1}\), \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\) are the control points.

a. Show that for \(0 \le t \le 1\), \({\bf{x}}\left( t \right)\) is in the convex hull of the control points.

b. Suppose that a B-spline curve \({\bf{x}}\left( t \right)\)is translated to \({\bf{x}}\left( t \right) + {\bf{b}}\) (as in Exercise 1). Show that this new curve is again a B-spline.

Short Answer

Expert verified

It is shown that \({\rm{x}}\left( t \right)\) is the convex combination of the control points.

b) It is shown that \({\bf{x}}\left( t \right) + {\bf{b}}\) is a cubic B-spline with control point \(\left( {{{\bf{p}}_0} + {\bf{b}},\,{{\bf{p}}_1} + {\bf{b}},{{\bf{p}}_2} + {\bf{b}}} \right)\).

Step by step solution

01

Describe the given information

A parametric vector form of a B-spline curveis given as\({\bf{x}}\left( t \right) = \frac{1}{6}\left[ {{{\left( {1 - t} \right)}^3}{{\bf{p}}_o} + \left( {3t{{\left( {1 - t} \right)}^2} - 3t + 4} \right){{\bf{p}}_1} + \left( {3{t^2}\left( {1 - t} \right) + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}} \right]\;,\,\;0 \le t \le 1\).

It is to be shown that for \(0 \le t \le 1\), \({\bf{x}}\left( t \right)\) in the convex hull of the control points \({{\rm{p}}_1}\), \({{\rm{p}}_2}\), \({{\rm{p}}_3}\), \({{\rm{p}}_4}\) and for the translation \({\rm{x}}\left( t \right) + {\rm{b}}\), the parametric curve is also a B-spline.

02

Check \({\bf{x}}\left( t \right)\) is a convex combination of the points \(\left\{ {{{\rm{p}}_0}{\rm{,}}{{\rm{p}}_1}{\rm{,}}{{\rm{p}}_2}{\rm{,}}{{\rm{p}}_3}} \right\}\) or not 

For \({\rm{x}}\left( t \right)\) to be the convex combination of the control points, the constant of the its parametric curve must sum up to 1. To check, expand \({\rm{x}}\left( t \right)\) as shown below:

\(\begin{array}{c}{\bf{x}}\left( t \right) = \frac{1}{6}\left[ {{{\left( {1 - t} \right)}^3}{{\bf{p}}_o} + \left( {3t{{\left( {1 - t} \right)}^2} - 3t + 4} \right){{\bf{p}}_1} + \left( {3{t^2}\left( {1 - t} \right) + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}} \right]\;\\ = \frac{1}{6}\left[ {\left( {1 - {t^3} + 3{t^2} - 3t} \right){{\bf{p}}_o} + \left( {3{t^3} - 6{t^2} + 4} \right){{\bf{p}}_1} + \left( {3{t^2} - 3{t^3} + 3t + 1} \right){{\bf{p}}^2} + {t^3}{{\bf{p}}_3}} \right]\end{array}\)

The sum of the constant is \(\frac{1}{6} + \frac{4}{6} + \frac{1}{6}\) which is 1 only.

So, \({\rm{x}}\left( t \right)\) is the convex combination of the control points.

03

Simplify \(x\left( t \right) + b\)

Consider \({\rm{x}}\left( t \right)\) as shown below:

\(\begin{array}{c}{\bf{x}}\left( t \right) = \frac{1}{6}\left[ {{{\left( {1 - t} \right)}^3}{{\bf{p}}_o} + \left( {3t{{\left( {1 - t} \right)}^2} - 3t + 4} \right){{\bf{p}}_1} + \left( {3{t^2}\left( {1 - t} \right) + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}} \right]\;\\ = \frac{1}{6}\left[ {\left( {1 - {t^3} + 3{t^2} - 3t} \right){{\bf{p}}_o} + \left( {3{t^3} - 6{t^2} + 4} \right){{\bf{p}}_1} + \left( {3{t^2} - 3{t^3} + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}} \right]\end{array}\)

Simplify \({\bf{x}}\left( t \right)\) by adding \(\frac{1}{6}\left( {6{\bf{b}}} \right)\) to it, as shown below:

\(\begin{array}{c}{\bf{x}}\left( t \right) + {\bf{b}} = \frac{1}{6}\left[ {\left( {1 - {t^3} + 3{t^2} - 3t} \right){{\bf{p}}_o} + \left( {3{t^3} - 6{t^2} + 4} \right){{\bf{p}}_1} + \left( {3{t^2} - 3{t^3} + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}} \right] + {\bf{b}}\\ = \frac{1}{6}\left[ {\left( {1 - {t^3} + 3{t^2} - 3t} \right){{\bf{p}}_o} + \left( {3{t^3} - 6{t^2} + 4} \right){{\bf{p}}_1} + \left( {3{t^2} - 3{t^3} + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}} \right]\\ + \frac{1}{6}\left( {6{\bf{b}}} \right)\\ = \frac{1}{6}\left[ \begin{array}{l}\left( {1 - {t^3} + 3{t^2} - 3t} \right)\left( {{{\bf{p}}_o} + {\bf{b}}} \right) + \left( {3{t^3} - 6{t^2} + 4} \right)\left( {{{\bf{p}}_1} + {\bf{b}}} \right) + \left( {3{t^2} - 3{t^3} + 3t + 1} \right)\\\left( {{{\bf{p}}_2} + {\bf{b}}} \right) + {t^3}\left( {{{\bf{p}}_3} + {\bf{b}}} \right)\end{array} \right]\end{array}\)

04

Draw a conclusion

As \({\bf{x}}\left( t \right) + {\bf{b}}\) is translated using points \(\left( {{{\bf{p}}_0} + {\bf{b}},\,{{\bf{p}}_1} + {\bf{b}},{{\bf{p}}_2} + {\bf{b}}} \right)\). This shows that \({\bf{x}}\left( t \right) + {\bf{b}}\)is a cubic B-spline with control point \(\left( {{{\bf{p}}_0} + {\bf{b}},\,{{\bf{p}}_1} + {\bf{b}},{{\bf{p}}_2} + {\bf{b}}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{aligned}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{aligned}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each of the given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{8}}\\{\bf{4}}\end{aligned}} \right)\)

b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{6}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right)\)

c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{ - {\bf{1}}}\\{ - {\bf{5}}}\end{aligned}} \right)\)

Question: Repeat Exercise 7 when

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{ - {\bf{2}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{6}}\\{ - {\bf{5}}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{0}}\\{{\bf{12}}}\\{ - {\bf{6}}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{1}}}\\{{\bf{15}}}\\{ - {\bf{7}}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{5}}}\\{\bf{3}}\\{ - {\bf{8}}}\\{\bf{6}}\end{array}} \right)\), and \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{6}}\\{ - {\bf{6}}}\\{ - {\bf{8}}}\end{array}} \right)\)

Question: Suppose that the solutions of an equation \(A{\bf{x}} = {\bf{b}}\) are all of the form \({\bf{x}} = {x_{\bf{3}}}{\bf{u}} + {\bf{p}}\), where \({\bf{u}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right)\) and \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{\bf{4}}\end{array}} \right)\). Find points \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) such that the solution set of \(A{\bf{x}} = {\bf{b}}\) is \({\bf{aff}}\left\{ {{{\bf{v}}_{\bf{1}}},\,{{\bf{v}}_{\bf{2}}}} \right\}\).

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

3.\(\left( {\begin{aligned}{{}}1\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 2}\\{ - 4}\\8\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\{ - 1}\\{11}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{15}\\{ - 9}\end{aligned}} \right)\)

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{0}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{6}}}\\{\bf{7}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{\bf{3}}\\{\bf{1}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{4}}\\{ - {\bf{4}}}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free