Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Repeat Exercise 25 with\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\{\bf{2}}\\{ - {\bf{4}}}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{8}}\\{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{{\bf{10}}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{8}}\end{array}} \right]\), and \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{.{\bf{9}}}\\{{\bf{2}}.{\bf{0}}}\\{ - {\bf{3}}.{\bf{7}}}\end{array}} \right]\).

Short Answer

Expert verified

The point is \({\bf{x}}\left( t \right) = \left[ {\begin{array}{*{20}{c}}{2.7}\\6\\{ - 3.1}\end{array}} \right]\), and the intersection point is inside the triangle.

Step by step solution

01

Explain the intersection of the plane with the ray 

Recall that the typical point in the plane can be written as

\(x = \left( {1 - {c_2} - {c_3}} \right){v_1} + {c_2}{v_2} + {c_3}{v_3}\).

For the intersection of the plane with the ray, use the equation\({\bf{x}} = {\bf{a}} + t{\bf{b}}\).

It becomes as shown:

\(\begin{array}{c}\left( {1 - {c_2} - {c_3}} \right){v_1} + {c_2}{v_2} + {c_3}{v_3} = {\bf{a}} + t{\bf{b}}\\{c_2}\left( {{v_2} - {v_1}} \right) + {c_3}\left( {{v_3} - {v_1}} \right) + t\left( { - {\bf{b}}} \right) = {\bf{a}} - {v_1}\end{array}\)

02

Write the augmented matrix

Write the equation\({c_2}\left( {{v_2} - {v_1}} \right) + {c_3}\left( {{v_3} - {v_1}} \right) + t\left( { - {\bf{b}}} \right) = {\bf{a}} - {v_1}\)in the matrix form as shown below:

\(\left[ {\begin{array}{*{20}{c}}{{v_2} - {v_1}}&{{v_3} - {v_1}}&{ - {\bf{b}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{c_2}}\\{{c_3}}\\t\end{array}} \right] = {\bf{a}} - {v_1}\)

Obtain the vectors\({v_2} - {v_1}\)and \({v_3} - {v_1}\) as shown below:

\({{\bf{v}}_2} - {{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}7\\0\\{ - 1}\end{array}} \right]\)

And

\({{\bf{v}}_3} - {{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}2\\8\\2\end{array}} \right]\)

Also, \({\bf{a}} - {{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\{ - 2}\\{12}\end{array}} \right]\).

The augmented matrix is shown below:

\(\left[ {\begin{array}{*{20}{c}}7&2&{ - 0.9}&{ - 1}\\0&8&{ - 2}&{ - 2}\\{ - 1}&2&{3.7}&{12}\end{array}} \right]\)

03

Obtain the constant values 

Row-reduce theechelon form of\(\left[ {\begin{array}{*{20}{c}}7&2&{ - 0.9}&{ - 1}\\0&8&{ - 2}&{ - 2}\\{ - 1}&2&{3.7}&{12}\end{array}} \right]\)as shown below:

\(\left[ {\begin{array}{*{20}{c}}7&2&{ - 0.9}&{ - 1}\\0&8&{ - 2}&{ - 2}\\{ - 1}&2&{3.7}&{12}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 3.7}&{ - 12}\\0&8&{ - 2}&{ - 2}\\0&{16}&{25}&{83}\end{array}} \right]\)

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 3.7}&{ - 12}\\0&8&{ - 2}&{ - 2}\\0&{16}&{25}&{83}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 3.7}&{ - 12}\\0&4&{ - 1}&{ - 1}\\0&0&{29}&{87}\end{array}} \right]\)

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 3.7}&{ - 12}\\0&4&{ - 1}&{ - 1}\\0&0&{29}&{87}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 2}&0&{ - 0.9}\\0&4&0&2\\0&0&1&3\end{array}} \right]\)

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&0&{ - 0.9}\\0&4&0&2\\0&0&1&3\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&{0.1}\\0&1&0&{0.5}\\0&0&1&3\end{array}} \right]\)

Thus, the values are

\(\begin{array}{c}{c_2} = 0.1,\\{c_3} = 0.5,\\t = 3.\end{array}\)

Obtain the intersection point using the equation\({\bf{x}} = {\bf{a}} + t{\bf{b}}\).

\(\begin{array}{c}{\bf{x}} = {\bf{a}} + 3{\bf{b}}\\ = \left[ {\begin{array}{*{20}{c}}0\\0\\8\end{array}} \right] + 3\left[ {\begin{array}{*{20}{c}}{.9}\\{2.0}\\{ - 3.7}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{2.7}\\6\\{ - 3.1}\end{array}} \right]\end{array}\)

The equation\(x = \left( {1 - {c_2} - {c_3}} \right){v_1} + {c_2}{v_2} + {c_3}{v_3}\)becomes as shown below:

\(\begin{array}{c}{\bf{x}} = \left( {1 - 0.1 - 0.5} \right){{\bf{v}}_1} + 0.1{{\bf{v}}_2} + 0.5{{\bf{v}}_3}\\ = 0.4\left[ {\begin{array}{*{20}{c}}1\\2\\{ - 4}\end{array}} \right] + 0.1\left[ {\begin{array}{*{20}{c}}8\\2\\5\end{array}} \right] + 0.5\left[ {\begin{array}{*{20}{c}}3\\{10}\\{ - 2}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{2.7}\\6\\{ - 3.1}\end{array}} \right]\end{array}\)

From the above coordinate, all thebarycentric coordinates are positive.

It shows that the intersection point lies inside the triangle.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice problem 2.) If so, construct an affine dependence relation for the points.

2.\(\left( {\begin{aligned}{{}}2\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}5\\4\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 3}\\{ - 2}\end{aligned}} \right)\)

Explain why any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.

The parametric vector form of a B-spline curve was defined in the Practice Problems as

\({\bf{x}}\left( t \right) = \frac{1}{6}\left[ \begin{array}{l}{\left( {1 - t} \right)^3}{{\bf{p}}_o} + \left( {3t{{\left( {1 - t} \right)}^2} - 3t + 4} \right){{\bf{p}}_1}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left( {3{t^2}\left( {1 - t} \right) + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}\end{array} \right]\;\), for \(0 \le t \le 1\) where \({{\bf{p}}_o}\) , \({{\bf{p}}_1}\), \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\) are the control points.

a. Show that for \(0 \le t \le 1\), \({\bf{x}}\left( t \right)\) is in the convex hull of the control points.

b. Suppose that a B-spline curve \({\bf{x}}\left( t \right)\)is translated to \({\bf{x}}\left( t \right) + {\bf{b}}\) (as in Exercise 1). Show that this new curve is again a B-spline.

Question: 14. Show that if \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a basis for \({\mathbb{R}^3}\), then aff \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is the plane through \({{\rm{v}}_{\rm{1}}}{\rm{, }}{{\rm{v}}_{\rm{2}}}\) and \({{\rm{v}}_{\rm{3}}}\).

Find an example in \({\mathbb{R}^2}\) to show that equality need not hold in the statement of Exercise 25.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free