Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 21–24, a, b, and c are noncollinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \)and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

23. Let p be any point in the interior of\(\Delta {\bf{abc}}\), with barycentric coordinates\(\left( {r,s,t} \right)\), so that

\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\left[ {\begin{array}{*{20}{c}}r\\s\\t\end{array}} \right] = \widetilde {\bf{p}}\)

Use Exercise 21 and a fact about determinants (Chapter 3) to show that

\(r = \left( {area of \Delta pbc} \right)/\left( {area of \Delta abc} \right)\)

\(s = \left( {area of \Delta apc} \right)/\left( {area of \Delta abc} \right)\)

\(t = \left( {area of \Delta abp} \right)/\left( {area of \Delta abc} \right)\)

Short Answer

Expert verified

It is proved that \(r = \left( {area of \Delta pbc} \right)/\left( {area of \Delta abc} \right)\), \(s = \left( {area of \Delta apc} \right)/\left( {area of \Delta abc} \right)\), and \(t = \left( {area of \Delta abp} \right)/\left( {area of \Delta abc} \right)\).

Step by step solution

01

State the equation of point p

Write the equation for point p as shown below:

\(\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{a}}}&{\widetilde {\bf{b}}}&{\widetilde {\bf{c}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}r\\s\\t\end{array}} \right] = \widetilde {\bf{p}}\\r\widetilde {\bf{a}} + s\widetilde {\bf{b}} + t\widetilde {\bf{c}} = \widetilde {\bf{p}}\end{array}\)

02

Use the Crammer rule

Use theCrammer rule to solve for r.

\(r = \frac{{\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{p}}}&{\widetilde {\bf{b}}}&{\widetilde {\bf{c}}}\end{array}} \right]}}{{\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{a}}}&{\widetilde {\bf{b}}}&{\widetilde {\bf{c}}}\end{array}} \right]}}\)

By the concept given in Exercise 21, \(\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{p}}}&{\widetilde {\bf{b}}}&{\widetilde {\bf{c}}}\end{array}} \right]\)is twice the area of\(\Delta {\bf{pbc}}\).

It can be written as shown below:

\(\begin{array}{c}r = \frac{{\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{p}}}&{\widetilde {\bf{b}}}&{\widetilde {\bf{c}}}\end{array}} \right]}}{{\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{a}}}&{\widetilde {\bf{b}}}&{\widetilde {\bf{c}}}\end{array}} \right]}}\\ = \frac{{2\left[ {{\rm{ar}}\left( {\Delta {\bf{pbc}}} \right)} \right]}}{{2\left[ {{\rm{ar}}\left( {\Delta {\bf{abc}}} \right)} \right]}}\\ = \frac{{{\rm{area of }}\Delta {\bf{pbc}}}}{{{\rm{area of }}\Delta {\bf{abc}}}}\end{array}\)

Thus, it is proved that\[r = \left( {area of \Delta pbc} \right)/\left( {area of \Delta abc} \right)\].

Use the Crammer rule to solve for s.

\(s = \frac{{\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{a}}}&{\widetilde {\bf{p}}}&{\widetilde {\bf{c}}}\end{array}} \right]}}{{\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{a}}}&{\widetilde {\bf{b}}}&{\widetilde {\bf{c}}}\end{array}} \right]}}\)

By the concept given in Exercise 21, \(\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{a}}}&{\widetilde {\bf{p}}}&{\widetilde {\bf{c}}}\end{array}} \right]\)is twice the area of\(\Delta {\bf{apc}}\).

It can be written as shown below:

\(\begin{array}{c}s = \frac{{\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{a}}}&{\widetilde {\bf{p}}}&{\widetilde {\bf{c}}}\end{array}} \right]}}{{\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{a}}}&{\widetilde {\bf{b}}}&{\widetilde {\bf{c}}}\end{array}} \right]}}\\ = \frac{{2\left[ {{\rm{ar}}\left( {\Delta {\bf{apc}}} \right)} \right]}}{{2\left[ {{\rm{ar}}\left( {\Delta {\bf{abc}}} \right)} \right]}}\\ = \frac{{{\rm{area of }}\Delta {\bf{apc}}}}{{{\rm{area of }}\Delta {\bf{abc}}}}\end{array}\)

Thus, it is proved that\[s = \left( {area of \Delta apc} \right)/\left( {area of \Delta abc} \right)\].

Use the Crammer rule to solve for t.

\(t = \frac{{\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{a}}}&{\widetilde {\bf{b}}}&{\widetilde {\bf{p}}}\end{array}} \right]}}{{\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{a}}}&{\widetilde {\bf{b}}}&{\widetilde {\bf{c}}}\end{array}} \right]}}\)

By the concept given in Exercise 21, \(\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{a}}}&{\widetilde {\bf{b}}}&{\widetilde {\bf{p}}}\end{array}} \right]\)is twice the area of\(\Delta {\bf{abp}}\).

It can be written as shown below:

\(\begin{array}{c}s = \frac{{\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{a}}}&{\widetilde {\bf{b}}}&{\widetilde {\bf{p}}}\end{array}} \right]}}{{\det \left[ {\begin{array}{*{20}{c}}{\widetilde {\bf{a}}}&{\widetilde {\bf{b}}}&{\widetilde {\bf{c}}}\end{array}} \right]}}\\ = \frac{{2\left[ {{\rm{ar}}\left( {\Delta {\bf{abp}}} \right)} \right]}}{{2\left[ {{\rm{ar}}\left( {\Delta {\bf{abc}}} \right)} \right]}}\\ = \frac{{{\rm{area of }}\Delta {\bf{abp}}}}{{{\rm{area of }}\Delta {\bf{abc}}}}\end{array}\)

Thus, it is proved that \[t = \left( {area of \Delta abp} \right)/\left( {area of \Delta abc} \right)\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free