Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 21–24, a, b, and c are non-collinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \) and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

22. Let p be a point on the line through a and b. Show that\(det\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{p}} }\end{array}} \right] = 0\).

Short Answer

Expert verified

It is proved that \(\det \left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{p}} }\end{array}} \right] = 0\).

Step by step solution

01

State the equation of line

If a point p lies on the line passing through the points a and b, then the equation of line is\({\bf{p}} = \left( {1 - t} \right){\bf{a}} + t{\bf{b}}\), where\(t\)is aparameter.

Let\({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{{a_1}}\\{{a_2}}\end{array}} \right]\)and\({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{{b_1}}\\{{b_2}}\end{array}} \right]\)be the points.

Then, the equation of line can be represented as shown below:

\(\begin{array}{c}{\bf{p}} = \left( {1 - t} \right)\left[ {\begin{array}{*{20}{c}}{{a_1}}\\{{a_2}}\end{array}} \right] + t\left[ {\begin{array}{*{20}{c}}{{b_1}}\\{{b_2}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{\left( {1 - t} \right){a_1} + t{b_1}}\\{\left( {1 - t} \right){a_2} + t{b_2}}\end{array}} \right]\end{array}\)

Thus,\({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{{a_1}}\\{{a_2}}\end{array}} \right]\),\({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{{b_1}}\\{{b_2}}\end{array}} \right]\), and \({\bf{p}} = \left[ {\begin{array}{*{20}{c}}{\left( {1 - t} \right){a_1} + t{b_1}}\\{\left( {1 - t} \right){a_2} + t{b_2}}\end{array}} \right]\).

Then,\(\det \left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{p}} }\end{array}} \right]\)can be written as shown below:

\(\det \left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{p}} }\end{array}} \right] = \det \left[ {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{\left( {1 - t} \right){a_1} + t{b_1}}\\{{a_2}}&{{b_2}}&{\left( {1 - t} \right){a_2} + t{b_2}}\\1&1&1\end{array}} \right]\)

02

Find the determinant of the vectors

Add\( - 1\)times column 1 to column 2 to get column 2. Then, add\( - 1\)times column 1 to column 3 to get column 3 as shown below:

\(\begin{array}{c}\det \left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{p}} }\end{array}} \right] = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1} - {a_1}}&{ - t{a_1} + t{b_1}}\\{{a_2}}&{{b_2} - {a_2}}&{ - t{a_2} + t{b_2}}\\1&0&0\end{array}} \right|\\ = 1\left[ {\left( {{b_1} - {a_1}} \right)t\left( {{b_2} - {a_2}} \right) - \left( {{b_2} - {a_2}} \right)t\left( {{b_1} - {a_1}} \right)} \right]\\ = 0\end{array}\)

Thus, \(\det \left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{p}} }\end{array}} \right] = 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercise 4, determine whether each set is open or closed or neither open nor closed.

4. a. \(\left\{ {\left( {x,y} \right):{x^{\bf{2}}} + {y^{\bf{2}}} = {\bf{1}}} \right\}\)

b. \(\left\{ {\left( {x,y} \right):{x^{\bf{2}}} + {y^{\bf{2}}} > {\bf{1}}} \right\}\)

c. \(\left\{ {\left( {x,y} \right):{x^{\bf{2}}} + {y^{\bf{2}}} \le {\bf{1}}\,\,\,and\,\,y > {\bf{0}}} \right\}\)

d. \(\left\{ {\left( {x,y} \right):y \ge {x^{\bf{2}}}} \right\}\)

e. \(\left\{ {\left( {x,y} \right):y < {x^{\bf{2}}}} \right\}\)

Question: Let \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\), \({\bf{n}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{5}}\\{ - {\bf{1}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{1}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{0}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{4}}\\{\bf{0}}\\{\bf{4}}\end{array}} \right)\), and let H be the hyperplane in\({\mathbb{R}^{\bf{4}}}\) with normal n and passing through p. Which of the points \({{\bf{v}}_{\bf{1}}}\), \({{\bf{v}}_{\bf{2}}}\), and \({{\bf{v}}_{\bf{3}}}\) are on the same side of H as the origin, and which are not?

Repeat Exercise 25 with\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\{\bf{2}}\\{ - {\bf{4}}}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{8}}\\{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{{\bf{10}}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{8}}\end{array}} \right]\), and \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{.{\bf{9}}}\\{{\bf{2}}.{\bf{0}}}\\{ - {\bf{3}}.{\bf{7}}}\end{array}} \right]\).

Question: In Exercises 21 and 22, mark each statement True or False. Justify each answer.

22 a. If \(d\)is a real number and \(f\) is a nonzero linear functional defined on \({\mathbb{R}^n}\) , then \(f:d\)is a hyperplane in \({\mathbb{R}^n}\) .

b. Given any vector n and any real number \(d\), the set \(\left\{ {x:n \cdot x = d} \right\}\) is a hyperplane.

c. If \(A\) and \(B\) are nonempty disjoint sets such that \(A\) is compact and \(B\) is closed, then there exists a hyperplane that strictly separates \(A\) and \(B\).

d. If there exists a hyperplane \(H\) such that \(H\) does not strictly separate two sets \(A\) and \(B\), then \(\left( {{\rm{conv}}\,A} \right) \cap \left( {{\rm{conv}}\,B} \right) \ne \emptyset \) and \(B\).

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

5.\(\left( {\begin{aligned}{{}}1\\0\\{ - 2}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\1\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 1}\\5\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\5\\{ - 3}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free