Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:Suppose three tests are administered to a random sample of college students. Let \({X_1},................,{X_N}\) be observation vectors in \({\mathbb{R}^3}\) that list the three scores of each student, and for \(j = 1,2,3,\), let \({x_j}\) denote a student’s score on the \({j^{th}}\) exam. Suppose the covariance matrix of the data is

\(S = \left( {\begin{array}{*{20}{c}}5&2&0\\2&6&2\\0&2&7\end{array}} \right)\)

Let \(y\) be an “index” of student performance, with \(y = {c_1}{x_1} + {c_2}{x_2} + {c_3}{x_3}\), and\(c_1^2 + c_2^2 + c_3^2 = 1\),. Choose \({c_1},{c_2},{c_3}\) so that the variance of \(y\) over the data set is as large as possible. (Hint: The eigenvalues of the sample covariance matrix are \(\lambda = 3,6,{\rm{ and }}9\).)

Short Answer

Expert verified

The variance ofobtained as \({\lambda _1} = 9\).

Step by step solution

01

Mean Deviation form and Covariance Matrix

The Mean Deviation form of any \(p \times N\)is given by:

\(B = \left( {\begin{array}{*{20}{c}}{{{\hat X}_1}}&{{{\hat X}_2}}&{........}&{{{\hat X}_N}}\end{array}} \right)\)

Whose \(p \times p\)covariance matrix is:

\(S = \frac{1}{{N - 1}}B{B^T}\)

02

The Variance

From question, the matrix and the maximum eigenvalue we haveis:

\(\begin{array}{l}S = \left[ {\begin{array}{*{20}{c}}5&2&0\\2&6&2\\0&2&7\end{array}} \right]\\{\lambda _1} = 9\end{array}\)

The respectiveunit vector is:

The new variable will be:

Hence, this is the required answer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose A is a symmetric \(n \times n\) matrix and B is any \(n \times m\) matrix. Show that \({B^T}AB\), \({B^T}B\), and \(B{B^T}\) are symmetric matrices.

(M) Compute an SVD of each matrix in Exercises 26 and 27. Report the final matrix entries accurate to two decimal places. Use the method of Examples 3 and 4.

26. \(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{ - {\bf{18}}}&{{\bf{13}}}&{ - {\bf{4}}}&{\bf{4}}\\{\bf{2}}&{{\bf{19}}}&{ - {\bf{4}}}&{{\bf{12}}}\\{ - {\bf{14}}}&{{\bf{11}}}&{ - {\bf{12}}}&{\bf{8}}\\{ - {\bf{2}}}&{{\bf{21}}}&{\bf{4}}&{\bf{8}}\end{array}} \right)\)

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

19. Show that the columns of\(V\)are eigenvectors of\({A^T}A\), the columns of\(U\)are eigenvectors of\(A{A^T}\), and the diagonal entries of\({\bf{\Sigma }}\)are the singular values of \(A\). (Hint: Use the SVD to compute \({A^T}A\) and \(A{A^T}\).)

Classify the quadratic forms in Exercises 9–18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.

13. \({\bf{ - }}x_{\bf{1}}^{\bf{2}}{\bf{ - 6}}{x_{\bf{1}}}{x_{\bf{2}}} + {\bf{9}}x_{\bf{2}}^{\bf{2}}\)

Classify the quadratic forms in Exercises 9–18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.

14. \({\bf{3}}x_{\bf{1}}^{\bf{2}} + {\bf{4}}{x_{\bf{1}}}{x_{\bf{2}}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free