Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let A be the matrix of the quadratic form

\({\bf{9}}x_{\bf{1}}^{\bf{2}} + {\bf{7}}x_{\bf{2}}^{\bf{2}} + {\bf{11}}x_{\bf{3}}^{\bf{2}} - {\bf{8}}{x_{\bf{1}}}{x_{\bf{2}}} + {\bf{8}}{x_{\bf{1}}}{x_{\bf{3}}}\)

It can be shown that the eigenvalues of A are 3,9, and 15. Find an orthogonal matrix P such that the change of variable \({\bf{x}} = P{\bf{y}}\) transforms \({{\bf{x}}^T}A{\bf{x}}\) into a quadratic form which no cross-product term. Give P and the new quadratic form.

Short Answer

Expert verified

The matrix Pis \(P = \left( {\begin{aligned}{{}}{ - \frac{2}{3}}&{ - \frac{1}{3}}&{\frac{2}{3}}\\{ - \frac{2}{3}}&{\frac{2}{3}}&{ - \frac{1}{3}}\\{\frac{1}{3}}&{\frac{2}{3}}&{\frac{2}{3}}\end{aligned}} \right)\).

The new quadratic form is \(3y_1^2 + 9y_2^2 + 15y_3^2\).

Step by step solution

01

Find the eigenvalues of the coefficient matrix of the quadratic equation

The coefficient matrix for the equation \(9x_1^2 + + 7x_2^2 + 11x_3^2 - 8{x_1}{x_2} + 8{x_1}{x_3}\) is shown as:

\(A = \left( {\begin{aligned}{{}}9&{ - 4}&4\\{ - 4}&7&0\\4&0&{11}\end{aligned}} \right)\)

The characteristic equation of A can be written as:

\(\begin{aligned}{}\det \left( {A - \lambda I} \right) &= 0\\\left| {\begin{aligned}{{}}{9 - \lambda }&{ - 4}&4\\{ - 4}&{7 - \lambda }&0\\4&0&{11 - \lambda }\end{aligned}} \right| &= 0\\\left( {\lambda - 3} \right)\left( {\lambda - 9} \right)\left( {\lambda - 15} \right) &= 0\\\lambda &= 3,9,15\end{aligned}\)

02

Find the eigen vector of matrix A

Find the eigenvector for \(\lambda = 3\):

\(\begin{aligned}{}\left( {A - 3I} \right)X & = 0\\\left( {\begin{aligned}{{}}6&{ - 4}&4\\{ - 4}&4&0\\4&0&8\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) & = \left( {\begin{aligned}{{}}0\\0\end{aligned}} \right)\\{x_1} + 2{x_3} = 0\\{x_2} + 2{x_3} & = 0\end{aligned}\)

Thus, the general solution of the equation is:

\(\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) = \left( {\begin{aligned}{{}}{ - 2}\\{ - 2}\\1\end{aligned}} \right)\)

Find the eigenvector for \(\lambda = 9\):

\(\begin{aligned}{}\left( {A - 9I} \right)X & = 0\\\left( {\begin{aligned}{{}}1&0&{\frac{1}{2}}\\0&1&{ - 1}\\0&0&0\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) & = \left( {\begin{aligned}{{}}0\\0\\0\end{aligned}} \right)\\{x_1} + \frac{1}{2}{x_3} & = 0\\{x_2} - {x_3} & = 0\end{aligned}\)

Thus, the general solution of the equation is\(\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) = \left( {\begin{aligned}{{}}{ - \frac{1}{2}}\\1\\1\end{aligned}} \right)\).

Find the eigenvector for \(\lambda = 15\):

\(\begin{aligned}{}\left( {A - 15I} \right)X & = 0\\\left( {\begin{aligned}{{}}{ - 6}&{ - 4}&4\\{ - 4}&{ - 8}&0\\4&0&{ - 3}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) & = \left( {\begin{aligned}{{}}0\\0\\0\end{aligned}} \right)\\ - 6{x_1} - 4{x_2} + 4{x_3} & = 0\\ - 4{x_1} - 8{x_2} & = 0\\4{x_1} - 3{x_2} & = 0\end{aligned}\)

Thus, the general solution of the equation is\(\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) = \left( {\begin{aligned}{{}}2\\{ - 1}\\2\end{aligned}} \right)\).

03

Find normalized eigen vectors of A

The normalized eigenvectors are shown below:

\(\begin{aligned}{}{{\bf{u}}_1} & = \frac{1}{{\sqrt {\left( { - 2} \right) + {{\left( { - 2} \right)}^2} + {{\left( 1 \right)}^2}} }}\left( {\begin{aligned}{{}}{ - 2}\\{ - 2}\\1\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}}{ - \frac{2}{3}}\\{ - \frac{2}{3}}\\{\frac{1}{3}}\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{u}}_2} &= \frac{1}{{\sqrt {{{\left( { - \frac{1}{2}} \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} }}\left( {\begin{aligned}{{}}{ - \frac{1}{2}}\\1\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{ - \frac{1}{3}}\\{\frac{2}{3}}\\{\frac{2}{3}}\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{u}}_3} &= \frac{1}{{\sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( 2 \right)}^2}} }}\left( {\begin{aligned}{{}}2\\{ - 1}\\2\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{\frac{2}{3}}\\{ - \frac{1}{3}}\\{\frac{2}{3}}\end{aligned}} \right)\end{aligned}\)

04

Write the matrix P and D

Write matrix Pusing the normalized eigenvectors:

\(\begin{aligned}{}P &= \left( {\begin{aligned}{{}}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}&{{{\bf{u}}_3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{ - \frac{2}{3}}&{ - \frac{1}{3}}&{\frac{2}{3}}\\{ - \frac{2}{3}}&{\frac{2}{3}}&{ - \frac{1}{3}}\\{\frac{1}{3}}&{\frac{2}{3}}&{\frac{2}{3}}\end{aligned}} \right)\end{aligned}\)

Write matrix D using the eigenvalues of A.

\(D = \left( {\begin{aligned}{{}}3&0&0\\0&9&0\\0&0&{15}\end{aligned}} \right)\)

05

Find the new quadratic form

Consider the expression \({{\bf{x}}^T}A{\bf{x}}\).

\(\begin{aligned}{}{{\bf{x}}^T}A{\bf{x}} &= {\left( {P{\bf{y}}} \right)^T}A\left( {P{\bf{y}}} \right)\\ &= {{\bf{y}}^T}{P^T}AP{\bf{y}}\\ &= {{\bf{y}}^r}D{\bf{y}}\\ &= \left( {\begin{aligned}{{}}{{y_1}}&{{y_2}}&{{y_3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}3&0&0\\0&9&0\\0&0&{15}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{y_1}}\\{{y_2}}\\{{y_3}}\end{aligned}} \right)\\ &= 3y_1^2 + 9y_2^2 + 15y_3^2\end{aligned}\)

Thus, the new quadratic form is \(3y_1^2 + 9y_2^2 + 15y_3^2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 15 and 16, construct the pseudo-inverse of \(A\). Begin by using a matrix program to produce the SVD of \(A\), or, if that is not available, begin with an orthogonal diagonalization of \({A^T}A\). Use the pseudo-inverse to solve \(A{\rm{x}} = {\rm{b}}\), for \({\rm{b}} = \left( {6, - 1, - 4,6} \right)\) and let \(\mathop {\rm{x}}\limits^\^ \)be the solution. Make a calculation to verify that \(\mathop {\rm{x}}\limits^\^ \) is in Row \(A\). Find a nonzero vector \({\rm{u}}\) in Nul\(A\), and verify that \(\left\| {\mathop {\rm{x}}\limits^\^ } \right\| < \left\| {\mathop {\rm{x}}\limits^\^ + {\rm{u}}} \right\|\), which must be true by Exercise 13(c).

15. \(A = \left[ {\begin{array}{*{20}{c}}{ - 3}&{ - 3}&{ - 6}&6&{\,\,1}\\{ - 1}&{ - 1}&{ - 1}&1&{ - 2}\\{\,\,\,0}&{\,\,0}&{ - 1}&1&{ - 1}\\{\,\,\,0}&{\,\,0}&{ - 1}&1&{ - 1}\end{array}} \right]\)

Determine which of the matrices in Exercises 7–12 are orthogonal. If orthogonal, find the inverse.

8. \(\left( {\begin{aligned}{{}}1&{\,\,\,1}\\1&{ - 1}\end{aligned}} \right)\)

Let \(A = \left( {\begin{aligned}{{}}{\,\,\,4}&{ - 1}&{ - 1}\\{ - 1}&{\,\,\,4}&{ - 1}\\{ - 1}&{ - 1}&{\,\,\,4}\end{aligned}} \right)\), and\({\rm{v}} = \left( {\begin{aligned}{{}}1\\1\\1\end{aligned}} \right)\). Verify that 5 is an eigenvalue of \(A\) and \({\rm{v}}\)is an eigenvector. Then orthogonally diagonalize \(A\).

Question: Let \({x_1}\,,{x_2}\) denote the variables for the two-dimensional data in Exercise 1. Find a new variable \({y_1}\) of the form \({y_1} = {c_1}{x_1} + {c_2}{x_2}\), with\(c_1^2 + c_2^2 = 1\), such that \({y_1}\) has maximum possible variance over the given data. How much of the variance in the data is explained by \({y_1}\)?

Question:Repeat Exercise 7 for the data in Exercise 2.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free