Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) be Bézier curves from Exercise 5, and suppose the combined curve has \({C^2}\)continuity (which includes \({C^1}\) continuity) at \({{\bf{p}}_3}\) . Set \({\mathbf{x}}''\left( 1 \right) = {\mathbf{y}}''\left( 0 \right)\) and show that \({{\bf{p}}_5}\) is completely determined by \({{\bf{p}}_1}\) , \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\) . Thus, the points \({{\bf{p}}_0},...,\,{{\bf{p}}_3}\)and the \({C^2}\) condition determine all but one of the control points for \({\bf{y}}\left( t \right)\).

Short Answer

Expert verified

It is shown that \({{\bf{p}}_5}\) is dependent on \({{\bf{p}}_1}\),\({{\bf{p}}_2}\)and \({{\bf{p}}_3}\).

Step by step solution

01

Step 1:Describe the given information

It is given that\({\bf{x}}\left( t \right)\)and\({\bf{y}}\left( t \right)\)are the Bézier curves their combined curve has\({C^2}\)continuity including\({C^1}\)continuityat\({{\bf{p}}_3}\).

It has already been shown that \({\mathbf{x}}''(0) = 6\left( {{{\mathbf{p}}_o} - {{\mathbf{p}}_1}} \right) + 6\left( {{{\mathbf{p}}_2} - {{\mathbf{p}}_1}} \right)\), \({\mathbf{x}}''(1) = 6\left( {{{\mathbf{p}}_1} - {{\mathbf{p}}_2}} \right) + 6\left( {{{\mathbf{p}}_3} - {{\mathbf{p}}_2}} \right)\) and if x''(0) is the control point of\({\bf{y}}\left( t \right)\), then \({\mathbf{y}}''(0) = 6\left( {{{\mathbf{p}}_3} - {{\mathbf{p}}_4}} \right) + 6\left( {{{\mathbf{p}}_5} - {{\mathbf{p}}_4}} \right)\) .

02

Step 2:Set \({\mathbf{x}}''\left( 1 \right) = {\mathbf{y}}''\left( 0 \right)\)

Find the relation as shown below:

\(\begin{array}{c}\left( {{{\bf{p}}_1} - {{\bf{p}}_2}} \right) + 6\left( {{{\bf{p}}_3} - {{\bf{p}}_2}} \right) = 6\left( {{{\bf{p}}_3} - {{\bf{p}}_4}} \right) + 6\left( {{{\bf{p}}_5} - {{\bf{p}}_4}} \right)\\\left( {{{\bf{p}}_1} - {{\bf{p}}_2}} \right) + \left( {{{\bf{p}}_3} - {{\bf{p}}_2}} \right) = \left( {{{\bf{p}}_3} - {{\bf{p}}_4}} \right) + \left( {{{\bf{p}}_5} - {{\bf{p}}_4}} \right)\end{array}\)

We can write \({{\bf{p}}_3} = \frac{1}{2}\left( {{{\bf{p}}_2} + {{\bf{p}}_4}} \right)\)or\({{\bf{p}}_4} = {{\bf{p}}_3} + {{\bf{p}}_3} - {{\bf{p}}_2}\) as the curves have \({C^1}\) continuity at \({{\bf{p}}_3}\).

03

Plug in  \({{\bf{p}}_3} = \frac{1}{2}\left( {{{\bf{p}}_2} + {{\bf{p}}_4}} \right)\) into the resulting equation

The equation becomes as shown below:

\(\begin{array}{c}\left( {{{\bf{p}}_1} - {{\bf{p}}_2}} \right) + \left( {\frac{1}{2}\left( {{{\bf{p}}_2} + {{\bf{p}}_4}} \right) - {{\bf{p}}_2}} \right) = \left( {\frac{1}{2}\left( {{{\bf{p}}_2} + {{\bf{p}}_4}} \right) - {{\bf{p}}_4}} \right) + \left( {{{\bf{p}}_5} - {{\bf{p}}_4}} \right)\\\left( {{{\bf{p}}_1} - {{\bf{p}}_2}} \right) + 2\left( {{{\bf{p}}_3} - {{\bf{p}}_2}} \right) + {{\bf{p}}_4} = {{\bf{p}}_5}\end{array}\)

04

Plugin  \({{\bf{p}}_4} = {{\bf{p}}_3} + {{\bf{p}}_3} - {{\bf{p}}_2}\) into the resulting equation 

\(\begin{array}{c}\left( {{{\bf{p}}_1} - {{\bf{p}}_2}} \right) + 2\left( {{{\bf{p}}_3} - {{\bf{p}}_2}} \right) + {{\bf{p}}_3} + {{\bf{p}}_3} - {{\bf{p}}_2} = {{\bf{p}}_5}\\{{\bf{p}}_5} = {{\bf{p}}_3} + \left( {{{\bf{p}}_1} - {{\bf{p}}_2}} \right) + 3\left( {{{\bf{p}}_3} - {{\bf{p}}_2}} \right)\end{array}\)

05

Draw a conclusion

As \({{\bf{p}}_4} = {{\bf{p}}_3} + {{\bf{p}}_3} - {{\bf{p}}_2}\) and \({{\bf{p}}_5} = {{\bf{p}}_3} + \left( {{{\bf{p}}_1} - {{\bf{p}}_2}} \right) + 3\left( {{{\bf{p}}_3} - {{\bf{p}}_2}} \right)\), it is stated that \({{\bf{p}}_4}\)and \({{\bf{p}}_5}\)depends on \({{\bf{p}}_1}\),\({{\bf{p}}_2}\)and \({{\bf{p}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: If A is \(m \times n\), then the matrix \(G = {A^T}A\) is called the Gram matrix of A. In this case, the entries of G are the inner products of the columns of A. (See Exercises 9 and 10).

9. Show that the Gram matrix of any matrix A is positive semidefinite, with the same rank as A. (See the Exercises in Section 6.5.)

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

13. \(\left( {\begin{aligned}{{}}3&1\\1&{\,\,3}\end{aligned}} \right)\)

Question: In Exercises 1 and 2, convert the matrix of observations to mean deviation form, and construct the sample covariance matrix.

\(1.\,\,\left( {\begin{array}{*{20}{c}}{19}&{22}&6&3&2&{20}\\{12}&6&9&{15}&{13}&5\end{array}} \right)\)

Question 7: Prove that an \(n \times n\) A is positive definite if and only if A admits a Cholesky factorization, namely, \(A = {R^T}R\) for some invertible upper triangular matrix R whose diagonal entries are all positive. (Hint; Use a QR factorization and Exercise 26 in Section 7.2.)

(M) Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.

39. \(\left( {\begin{aligned}{{}}{.{\bf{31}}}&{.{\bf{58}}}&{.{\bf{08}}}&{.{\bf{44}}}\\{.{\bf{58}}}&{ - .{\bf{56}}}&{.{\bf{44}}}&{ - .{\bf{58}}}\\{.{\bf{08}}}&{.{\bf{44}}}&{.{\bf{19}}}&{ - .{\bf{08}}}\\{ - .{\bf{44}}}&{ - .{\bf{58}}}&{ - .{\bf{08}}}&{.{\bf{31}}}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free