Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: [M] The covariance matrix below was obtained from a Landsat image of the Columbia River in Washington, using data from three spectral bands. Let \({x_1},{x_2},{x_3}\) denote the spectral components of each pixel in the image. Find a new variable of the form \({y_1} = {c_1}{x_1} + {c_2}{x_2} + {c_3}{x_3}\) that has maximum possible variance, subject to the constraint that \(c_1^2 + c_2^2 + c_3^2 = 1\). What percentage of the total variance in the data is explained by \({y_1}\)?

\[S = \left[ {\begin{array}{*{20}{c}}{29.64}&{18.38}&{5.00}\\{18.38}&{20.82}&{14.06}\\{5.00}&{14.06}&{29.21}\end{array}} \right]\]

Short Answer

Expert verified

The variance of\(y = 0.615525{x_1} + 0.599424{x_2} + 0.511683{x_3}\)obtained as:\({\lambda _1} = 51.6957\).

The required percentage is: \(64.8872\% \).

Step by step solution

01

Mean Deviation form and Covariance Matrix

The Mean Deviation form of any \(p \times N\)is given by:

\(B = \left[ {\begin{array}{*{20}{c}}{{{\hat X}_1}}&{{{\hat X}_2}}&{........}&{{{\hat X}_N}}\end{array}} \right]\)

Whose \(p \times p\)covariance matrix is:

\(S = \frac{1}{{N - 1}}B{B^T}\)

02

The Variance

From question, the matrix and themaximum eigenvalue we haveis:

\(\begin{array}{l}S = \left[ {\begin{array}{*{20}{c}}{29.64}&{18.38}&{5.00}\\{18.38}&{20.82}&{14.06}\\{5.00}&{14.06}&{29.21}\end{array}} \right]\\{\lambda _1} = 51.6957\end{array}\)

The respective unit vector is:

\({u_1} = \left[ {\begin{array}{*{20}{c}}{0.615525}\\{0.599424}\\{0.511683}\end{array}} \right]\)

The new variable will be:

\({y_1} = 0.615525{x_1} + 0.599424{x_2} + 0.511683{x_3}\)

Now, the percentage of change in variance can be obtained as:

\[\begin{array}{c}\Delta = \frac{{{\lambda _1}}}{{tr\left( S \right)}} \times 100\\ = \frac{{51.6957}}{{29.64 + 20.82 + 29.21}} \times 100\\ = 64.8872\% \end{array}\]

Hence, this is the required answer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1 and 2,find the change of variable \({\rm{x}} = P{\rm{y}}\) that transforms the quadratic form \({{\rm{x}}^T}A{\rm{x}}\) into \({{\rm{y}}^T}D{\rm{y}}\) as shown.

2. \(3x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1^{}x_2^{} + 2x_1^{}x_3^{} + 2x_2^{}x_3^{} = 7y_1^2 + 4y_2^2\).

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix \(P\) and a diagonal matrix \(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17) \( - {\bf{4}}\), 4, 7; (18) \( - {\bf{3}}\), \( - {\bf{6}}\), 9; (19) \( - {\bf{2}}\), 7; (20) \( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

16. \(\left( {\begin{aligned}{{}}{\,6}&{ - 2}\\{ - 2}&{\,\,\,9}\end{aligned}} \right)\)

Question: In Exercises 15 and 16, construct the pseudo-inverse of \(A\). Begin by using a matrix program to produce the SVD of \(A\), or, if that is not available, begin with an orthogonal diagonalization of \({A^T}A\). Use the pseudo-inverse to solve \(A{\rm{x}} = {\rm{b}}\), for \({\rm{b}} = \left( {6, - 1, - 4,6} \right)\) and let \(\mathop {\rm{x}}\limits^\^ \)be the solution. Make a calculation to verify that \(\mathop {\rm{x}}\limits^\^ \) is in Row \(A\). Find a nonzero vector \({\rm{u}}\) in Nul\(A\), and verify that \(\left\| {\mathop {\rm{x}}\limits^\^ } \right\| < \left\| {\mathop {\rm{x}}\limits^\^ + {\rm{u}}} \right\|\), which must be true by Exercise 13(c).

15. \(A = \left[ {\begin{array}{*{20}{c}}{ - 3}&{ - 3}&{ - 6}&6&{\,\,1}\\{ - 1}&{ - 1}&{ - 1}&1&{ - 2}\\{\,\,\,0}&{\,\,0}&{ - 1}&1&{ - 1}\\{\,\,\,0}&{\,\,0}&{ - 1}&1&{ - 1}\end{array}} \right]\)

Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.

37. \(\left( {\begin{aligned}{{}}{\bf{6}}&{\bf{2}}&{\bf{9}}&{ - {\bf{6}}}\\{\bf{2}}&{\bf{6}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{9}}&{ - {\bf{6}}}&{\bf{6}}&{\bf{2}}\\{\bf{6}}&{\bf{9}}&{\bf{2}}&{\bf{6}}\end{aligned}} \right)\)

Determine which of the matrices in Exercises 1–6 are symmetric.

5. \(\left( {\begin{aligned}{{}{}}{ - 6}&2&0\\2&{ - 6}&2\\0&2&{ - 6}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free