Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: [M] A Landsat image with three spectral components was made of Homestead Air Force Base in Florida (after the base was hit by Hurricane Andrew in 1992). The covariance matrix of the data is shown below. Find the first principal component of the data, and compute the percentage of the total variance that is contained in this component.

\[S = \left[ {\begin{array}{*{20}{c}}{164.12}&{32.73}&{81.04}\\{32.73}&{539.44}&{249.13}\\{81.04}&{246.13}&{189.11}\end{array}} \right]\]

Short Answer

Expert verified

The required percentage is \(75.8956\% \).

Step by step solution

01

Mean Deviation form and Covariance Matrix

The Mean Deviation form of any \(p \times N\)is given by:

\(B = \left[ {\begin{array}{*{20}{c}}{{{\hat X}_1}}&{{{\hat X}_2}}&{........}&{{{\hat X}_N}}\end{array}} \right]\)

Whose \(p \times p\)covariance matrix is:

\(S = \frac{1}{{N - 1}}B{B^T}\)

02

The Variance

From question, thecovariance matrix and themaximum eigenvalue we haveis:

\(\begin{array}{l}S = \left[ {\begin{array}{*{20}{c}}{164.12}&{32.73}&{81.04}\\{32.73}&{539.44}&{249.13}\\{81.04}&{246.13}&{189.11}\end{array}} \right]\\{\lambda _1} = 677.497\end{array}\)

The respective unit vector is:

\({u_1} = \left[ {\begin{array}{*{20}{c}}{0.129554}\\{0.874423}\\{0.467547}\end{array}} \right]\)

Now, the percentage of change in variance can be obtained as:

\[\begin{array}{c}\Delta = \frac{{{\lambda _1}}}{{tr\left( S \right)}} \times 100\\ = \frac{{677.4978}}{{164.12 + 539.44 + 189.11}} \times 100\\ = 75.8956\% \end{array}\]

Hence, this is the required answer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose A is invertible and orthogonally diagonalizable. Explain why \({A^{ - {\bf{1}}}}\) is also orthogonally diagonalizable.

Make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form \(x_{\bf{1}}^{\bf{2}} + {\bf{10}}{x_{\bf{1}}}{x_{\bf{2}}} + x_{\bf{2}}^{\bf{2}}\) into a quadratic form with no cross-product term. Give P and the new quadratic form.

Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.

37. \(\left( {\begin{aligned}{{}}{\bf{6}}&{\bf{2}}&{\bf{9}}&{ - {\bf{6}}}\\{\bf{2}}&{\bf{6}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{9}}&{ - {\bf{6}}}&{\bf{6}}&{\bf{2}}\\{\bf{6}}&{\bf{9}}&{\bf{2}}&{\bf{6}}\end{aligned}} \right)\)

Compute the quadratic form \({{\bf{x}}^T}A{\bf{x}}\), when \(A = \left( {\begin{aligned}{{}}5&{\frac{1}{3}}\\{\frac{1}{3}}&1\end{aligned}} \right)\) and

a. \({\bf{x}} = \left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\end{aligned}} \right)\)

b. \({\bf{x}} = \left( {\begin{aligned}{{}}6\\1\end{aligned}} \right)\)

c. \({\bf{x}} = \left( {\begin{aligned}{{}}1\\3\end{aligned}} \right)\)

Question: 14. Exercises 12–14 concern an \(m \times n\) matrix \(A\) with a reduced singular value decomposition, \(A = {U_r}D{V_r}^T\), and the pseudoinverse \({A^ + } = {U_r}{D^{ - 1}}{V_r}^T\).

Given any \({\rm{b}}\) in \({\mathbb{R}^m}\), adapt Exercise 13 to show that \({A^ + }{\rm{b}}\) is the least-squares solution of minimum length. [Hint: Consider the equation \(A{\rm{x}} = {\rm{b}}\), where \(\mathop {\rm{b}}\limits^\^ \) is the orthogonal projection of \({\rm{b}}\) onto Col \(A\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free