Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: 13. The sample covariance matrix is a generalization of a formula for the variance of a sample of \(N\) scalar measurements, say \({t_1},................,{t_N}\). If \(m\) is the average of \({t_1},................,{t_N}\), then the sample variance is given by

\(\frac{1}{{N - 1}}\sum\limits_{k = 1}^n {{{\left( {{t_k} - m} \right)}^2}} \)

Show how the sample covariance matrix, \(S\), defined prior to Example 3, may be written in a form similar to (1). (Hint: Use partitioned matrix multiplication to write \(S\) as \(\frac{1}{{N - 1}}\) times the sum of \(N\) matrices of size \(p \times p\). For \(1 \le k \le N\), write \({X_k} - M\) in place of \({\hat X_k}\).)

Short Answer

Expert verified

It is verified that the sample covariance matrix can be written in the form:

\(S = \frac{1}{{N - 1}}\sum\limits_{k = 1}^N {\left( {{X_k} - M} \right){{\left( {{X_k} - M} \right)}^T}} \)

Step by step solution

01

Mean Deviation form and Covariance Matrix.

The Mean Deviation formof any \(p \times N\)is given by:

\(B = \left( {\begin{array}{*{20}{c}}{{{{\bf{\hat X}}}_1}}&{{{{\bf{\hat X}}}_2}}&{........}&{{{{\bf{\hat X}}}_N}}\end{array}} \right)\)

Whose \(p \times p\) covariance matrixis:

\(S = \frac{1}{{N - 1}}B{B^T}\)

02

The Mean Deviation Form

Let the sample mean be\(M\). Then,we have:

\({{\bf{\hat X}}_k} = {{\bf{X}}_k} - M\)

The mean deviation formis given by:

\(B = \left( {\begin{array}{*{20}{c}}{{{{\bf{\hat X}}}_1}}&{......}&{{{{\bf{\hat X}}}_N}}\end{array}} \right)\)

Now, thecovariance matrixcan be given as:

\(\begin{array}{c}S = \frac{1}{{N - 1}}B{B^T}\\ = \frac{1}{{N - 1}}\left( {\begin{array}{*{20}{c}}{{{{\bf{\hat X}}}_1}}&{......}&{{{{\bf{\hat X}}}_N}}\end{array}} \right){\left( {\begin{array}{*{20}{c}}{{{{\bf{\hat X}}}_1}}&{......}&{{{{\bf{\hat X}}}_N}}\end{array}} \right)^T}\\ = \frac{1}{{N - 1}}\sum\limits_{k = 1}^N {\left( {{{{\bf{\hat X}}}_k}} \right){{\left( {{{{\bf{\hat X}}}_k}} \right)}^T}} \\ = \frac{1}{{N - 1}}\sum\limits_{k = 1}^N {\left( {{{\bf{X}}_k} - M} \right){{\left( {{{\bf{X}}_k} - M} \right)}^T}} \end{array}\)

Hence, this is the required proof.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine which of the matrices in Exercises 1–6 are symmetric.

4. \(\left( {\begin{aligned}{{}}0&8&3\\8&0&{ - 4}\\3&2&0\end{aligned}} \right)\)

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

19. Show that the columns of\(V\)are eigenvectors of\({A^T}A\), the columns of\(U\)are eigenvectors of\(A{A^T}\), and the diagonal entries of\({\bf{\Sigma }}\)are the singular values of \(A\). (Hint: Use the SVD to compute \({A^T}A\) and \(A{A^T}\).)

Question: [M] The covariance matrix below was obtained from a Landsat image of the Columbia River in Washington, using data from three spectral bands. Let \({x_1},{x_2},{x_3}\) denote the spectral components of each pixel in the image. Find a new variable of the form \({y_1} = {c_1}{x_1} + {c_2}{x_2} + {c_3}{x_3}\) that has maximum possible variance, subject to the constraint that \(c_1^2 + c_2^2 + c_3^2 = 1\). What percentage of the total variance in the data is explained by \({y_1}\)?

\[S = \left[ {\begin{array}{*{20}{c}}{29.64}&{18.38}&{5.00}\\{18.38}&{20.82}&{14.06}\\{5.00}&{14.06}&{29.21}\end{array}} \right]\]

Question: 2. Let \(\left\{ {{{\bf{u}}_1},{{\bf{u}}_2},....,{{\bf{u}}_n}} \right\}\) be an orthonormal basis for \({\mathbb{R}_n}\) , and let \({\lambda _1},....{\lambda _n}\) be any real scalars. Define

\(A = {\lambda _1}{{\bf{u}}_1}{\bf{u}}_1^T + ..... + {\lambda _n}{\bf{u}}_n^T\)

a. Show that A is symmetric.

b. Show that \({\lambda _1},....{\lambda _n}\) are the eigenvalues of A

Let u be a unit vector in \({\mathbb{R}^n}\), and let \(B = {\bf{u}}{{\bf{u}}^T}\).

  1. Given any x in \({\mathbb{R}^n}\), compute Bx and show that Bx is the orthogonal projection of x onto u, as described in Section 6.2.
  2. Show that B is a symmetric matrix and \({B^{\bf{2}}} = B\).
  3. Show that u is an eigenvector of B. What is the corresponding eigenvalue?
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free