Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: 11. Given multivariate data \({X_1},................,{X_N}\) (in \({\mathbb{R}^p}\)) in mean deviation form, let \(P\) be a \(p \times p\) matrix, and define \({Y_k} = {P^T}{X_k}{\rm{ for }}k = 1,......,N\).

  1. Show that \({Y_1},................,{Y_N}\) are in mean-deviation form. (Hint: Let \(w\) be the vector in \({\mathbb{R}^N}\) with a 1 in each entry. Then \(\left( {{X_1},................,{X_N}} \right)w = 0\) (the zero vector in \({\mathbb{R}^p}\)).)
  2. Show that if the covariance matrix of \({X_1},................,{X_N}\) is \(S\), then the covariance matrix of \({Y_1},................,{Y_N}\) is \({P^T}SP\).

Short Answer

Expert verified

It is verified that:

  1. \(\left( {{{\bf{X}}_1},................,{{\bf{X}}_N}} \right)w = 0\)
  2. The covariance matrix is: \({S_Y} = {P^T}SP\)

Step by step solution

01

Mean Deviation form and Covariance Matrix

The Mean Deviation formof any \(p \times N\)is given by:

\(B = \left( {\begin{array}{*{20}{c}}{{{{\bf{\hat X}}}_1}}&{{{{\bf{\hat X}}}_2}}&{........}&{{{{\bf{\hat X}}}_N}}\end{array}} \right)\)

Whose \(p \times p\) covariance matrixis:

\(S = \frac{1}{{N - 1}}B{B^T}\)

02

The Mean Deviation Form (a)

From the question, the\(w\)is a unit vector with all values equal to 1. Then,we have:

\(\begin{array}{c}\left( {{{\bf{X}}_1},................,{{\bf{X}}_N}} \right)w = \left( {{{\bf{X}}_1},{{\bf{X}}_2}, \ldots ,{{\bf{X}}_n}} \right)\left( {\begin{array}{*{20}{c}}1\\1\\ \vdots \\1\end{array}} \right)\\ = {{\bf{X}}_1} + ...... + {{\bf{X}}_N}\\ = 0\end{array}\)

The mean deviation formgiven is:

\(\begin{array}{c}\left( {{{\bf{Y}}_1},................,{{\bf{Y}}_N}} \right)w = \left( {{P^T}{{\bf{X}}_1},................,{P^T}{{\bf{X}}_N}} \right)w\\ = {P^T}\left( {{{\bf{X}}_1} + ...... + {{\bf{X}}_N}} \right)w\\ = {P^T}\left( {{{\bf{X}}_1} + ...... + {{\bf{X}}_N}} \right)\left( {\begin{array}{*{20}{c}}1\\1\\ \vdots \\1\end{array}} \right)\\ = {P^T}\left( {{{\bf{X}}_1} + ...... + {{\bf{X}}_N}} \right)\\ = 0\end{array}\)

Hence, this is the required proof.

03

The Covariance Matrix (b)

From (a), thecovariance matrixcan be given as:

\(\begin{array}{c}{S_Y} = \frac{1}{{N - 1}}\left( {{{\bf{Y}}_1},................,{{\bf{Y}}_N}} \right){\left( {{{\bf{Y}}_1},................,{{\bf{Y}}_N}} \right)^T}\\ = \frac{1}{{N - 1}}\left( {{P^T}{{\bf{X}}_1},................,{P^T}{{\bf{X}}_N}} \right){\left( {{P^T}{{\bf{X}}_1},................,{P^T}{{\bf{X}}_N}} \right)^T}\\ = {P^T}\left\{ {\frac{1}{{N - 1}}\left( {{{\bf{X}}_1},......,{{\bf{X}}_N}} \right){{\left( {{{\bf{X}}_1},......,{{\bf{X}}_N}} \right)}^T}} \right\}P\\ = {P^T}SP\end{array}\)

Hence, this is the required proof.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Mark Each statement True or False. Justify each answer. In each part, A represents an \(n \times n\) matrix.

  1. If A is orthogonally diagonizable, then A is symmetric.
  2. If A is an orthogonal matrix, then A is symmetric.
  3. If A is an orthogonal matrix, then \(\left\| {A{\bf{x}}} \right\| = \left\| {\bf{x}} \right\|\) for all x in \({\mathbb{R}^n}\).
  4. The principal axes of a quadratic from \({{\bf{x}}^T}A{\bf{x}}\) can be the columns of any matrix P that diagonalizes A.
  5. If P is an \(n \times n\) matrix with orthogonal columns, then \({P^T} = {P^{ - {\bf{1}}}}\).
  6. If every coefficient in a quadratic form is positive, then the quadratic form is positive definite.
  7. If \({{\bf{x}}^T}A{\bf{x}} > {\bf{0}}\) for some x, then the quadratic form \({{\bf{x}}^T}A{\bf{x}}\) is positive definite.
  8. By a suitable change of variable, any quadratic form can be changed into one with no cross-product term.
  9. The largest value of a quadratic form \({{\bf{x}}^T}A{\bf{x}}\), for \(\left\| {\bf{x}} \right\| = {\bf{1}}\) is the largest entery on the diagonal A.
  10. The maximum value of a positive definite quadratic form \({{\bf{x}}^T}A{\bf{x}}\) is the greatest eigenvalue of A.
  11. A positive definite quadratic form can be changed into a negative definite form by a suitable change of variable \({\bf{x}} = P{\bf{u}}\), for some orthogonal matrix P.
  12. An indefinite quadratic form is one whose eigenvalues are not definite.
  13. If P is an \(n \times n\) orthogonal matrix, then the change of variable \({\bf{x}} = P{\bf{u}}\) transforms \({{\bf{x}}^T}A{\bf{x}}\) into a quadratic form whose matrix is \({P^{ - {\bf{1}}}}AP\).
  14. If U is \(m \times n\) with orthogonal columns, then \(U{U^T}{\bf{x}}\) is the orthogonal projection of x onto ColU.
  15. If B is \(m \times n\) and x is a unit vector in \({\mathbb{R}^n}\), then \(\left\| {B{\bf{x}}} \right\| \le {\sigma _{\bf{1}}}\), where \({\sigma _{\bf{1}}}\) is the first singular value of B.
  16. A singular value decomposition of an \(m \times n\) matrix B can be written as \(B = P\Sigma Q\), where P is an \(m \times n\) orthogonal matrix and \(\Sigma \) is an \(m \times n\) diagonal matrix.
  17. If A is \(n \times n\), then A and \({A^T}A\) have the same singular values.

In Exercises 17โ€“24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) โ€œdiagonalโ€ matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

24. Using the notation of Exercise 23, show that \({A^T}{u_j} = {\sigma _j}{v_j}\) for \({\bf{1}} \le {\bf{j}} \le {\bf{r}} = {\bf{rank}}\;{\bf{A}}\)

Question: Let \({x_1}\,,{x_2}\) denote the variables for the two-dimensional data in Exercise 1. Find a new variable \({y_1}\) of the form \({y_1} = {c_1}{x_1} + {c_2}{x_2}\), with\(c_1^2 + c_2^2 = 1\), such that \({y_1}\) has maximum possible variance over the given data. How much of the variance in the data is explained by \({y_1}\)?

Orthogonally diagonalize the matrices in Exercises 13โ€“22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17โ€“22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

22. \(\left( {\begin{aligned}{{}}4&0&1&0\\0&4&0&1\\1&0&4&0\\0&1&0&4\end{aligned}} \right)\)

In Exercises 17โ€“24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) โ€œdiagonalโ€ matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

17. Show that if \(A\) is square, then \(\left| {{\bf{det}}A} \right|\) is the product of the singular values of \(A\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free