Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Find an SVD of each matrix in Exercise 5-12. (Hint: In Exercise 11, one choice for U is \(\left( {\begin{array}{*{20}{c}}{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}\end{array}} \right)\). In Exercise 12, one column of U can be \(\left( {\begin{array}{*{20}{c}}{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\\{ - \frac{{\bf{2}}}{{\sqrt {\bf{6}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\end{array}} \right)\).)

8. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{6}}\\{\bf{0}}&{\bf{4}}\end{array}} \right)\)

Short Answer

Expert verified

The singular value decomposition of \(A\) is, \(A = \left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}&{ - \frac{1}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}8&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\\{ - \frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\)

Step by step solution

01

The Singular Value Decomposition

Consider \(m \times n\) matrix with rank \(r\) as \(A\). There is a \(m \times n\) matrix \(\sum \) as seen in (3) wherein the diagonal entriesin \(D\) are the first \(r\) singular valuesof A, \({\sigma _1} \ge \cdots \ge {\sigma _r} > 0,\) and there arises an \(m \times m\) orthogonal matrix \(U\) and an \(n \times n\) orthogonal matrix \(V\) such that \(A = U\sum {V^T}\).

02

Find the eigenvalues of the given matrix

Let \(A = \left( {\begin{array}{*{20}{c}}4&6\\0&4\end{array}} \right)\). The transpose of A is:

\({A^T} = \left( {\begin{array}{*{20}{c}}4&0\\6&4\end{array}} \right)\)

Find the product \({A^T}A\).

\(\begin{array}{c}{A^T}A = \left( {\begin{array}{*{20}{c}}4&0\\6&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}4&6\\0&4\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{16}&{24}\\{24}&{52}\end{array}} \right)\end{array}\)

The characteristic equation for \({A^T}A\) is:

\(\begin{array}{c}\det \left| {{A^T}A - \lambda I} \right| = 0\\\left| {\begin{array}{*{20}{c}}{16 - \lambda }&{24}\\{24}&{52 - \lambda }\end{array}} \right| = 0\\\left( {16 - \lambda } \right)\left( {52 - \lambda } \right) - 576 = 0\\{\lambda ^2} - 68\lambda + 256 = 0\\\lambda = 64,4\end{array}\)

03

Find the eigenvectors of the given matrix

The eigenvectors of the matrix for \(\lambda = 64\) are:

\(\begin{array}{c}\left( {{A^T}A - \lambda I} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = 0\\\left( {\begin{array}{*{20}{c}}{ - 48}&{24}\\{24}&{ - 12}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = 0\\ - 48{x_1} + 24{x_2} = 0\\24{x_1} - 12{x_2} = 0\end{array}\)

The general solution is:

\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{\frac{1}{2}}\\1\end{array}} \right)\;{\rm{or}}\,\left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right)\)

The eigenvectors of the matrix for \(\lambda = 4\) are:

\(\begin{array}{c}\left( {{A^T}A - \lambda I} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = 0\\\left( {\begin{array}{*{20}{c}}{12}&{24}\\{24}&{48}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = 0\\12{x_1} + 24{x_2} = 0\\24{x_1} + 48{x_2} = 0\end{array}\)

The general solution is:

\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \,\left( {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right)\)

04

Find the Eigenvector matrix

Normalize the eigenvector \(\left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right)\) is:

\(\begin{array}{c}{{\bf{v}}_1} = \frac{1}{{\sqrt {{1^2} + {2^2}} }}\left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

Normalize the eigenvector \(\left( {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right)\) is:

\(\begin{array}{c}{{\bf{v}}_2} = \frac{1}{{\sqrt {{{\left( { - 2} \right)}^2} + {1^2}} }}\left( {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - \frac{2}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

The eigenvector matrix is:

\(\begin{array}{c}V = \left( {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}&{ - \frac{2}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

05

Find the value of \(\Sigma \)

The singular value is the square root of eigenvalues of \({A^T}A\), that are 8 and 2. Thus the matrix \(\Sigma \) is:

\(\Sigma = \left( {\begin{array}{*{20}{c}}8&0\\0&2\end{array}} \right)\)

06

Find the matrix U

Compute the column vectors \({{\bf{u}}_1}\) and \({{\bf{u}}_2}\):

\(\begin{array}{c}{{\bf{u}}_1} = \frac{1}{{\sqrt {{\lambda _1}} }}A{{\bf{v}}_1}\\ = \frac{1}{{\sqrt {64} }}\left( {\begin{array}{*{20}{c}}4&6\\0&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

And

\(\begin{array}{c}{{\bf{u}}_2} = \frac{1}{{\sqrt {{\lambda _2}} }}A{{\bf{v}}_2}\\ = \frac{1}{{\sqrt 4 }}\left( {\begin{array}{*{20}{c}}4&6\\0&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - \frac{2}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - \frac{1}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

The matrix Ucan be determined as follows:

\(\begin{array}{c}U = \left( {\begin{array}{*{20}{c}}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}&{ - \frac{1}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

The SVD of A can be written as,

\(\begin{array}{c}A = U\Sigma {V^T}\\ = \left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}&{ - \frac{1}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}8&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\\{ - \frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

Hence, the SVD of the given matrix is, \(A = \left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}&{ - \frac{1}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}8&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\\{ - \frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose\(A = PR{P^{ - {\bf{1}}}}\), where P is orthogonal and R is upper triangular. Show that if A is symmetric, then R is symmetric and hence is actually a diagonal matrix.

In Exercises 25 and 26, mark each statement True or False. Justify each answer.

a. An\(n \times n\)matrix that is orthogonally diagonalizable must be symmetric.

b. If\({A^T} = A\)and if vectors\({\rm{u}}\)and\({\rm{v}}\)satisfy\(A{\rm{u}} = {\rm{3u}}\)and\(A{\rm{v}} = {\rm{3v}}\), then\({\rm{u}} \cdot {\rm{v}} = {\rm{0}}\).

c. An\(n \times n\)symmetric matrix has n distinct real eigenvalues.

d. For a nonzero \({\rm{v}}\) in \({\mathbb{R}^n}\) , the matrix \({\rm{v}}{{\rm{v}}^T}\) is called a projection matrix.

Orthogonally diagonalize the matrices in Exercises 13โ€“22, giving an orthogonal matrix \(P\) and a diagonal matrix \(D\). To save you time, the eigenvalues in Exercises 17โ€“22 are: (17) \( - {\bf{4}}\), 4, 7; (18) \( - {\bf{3}}\), \( - {\bf{6}}\), 9; (19) \( - {\bf{2}}\), 7; (20) \( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

21. \(\left( {\begin{aligned}{{}}4&3&1&1\\3&4&1&1\\1&1&4&3\\1&1&3&4\end{aligned}} \right)\)

Question 11: Prove that any \(n \times n\) matrix A admits a polar decomposition of the form \(A = PQ\), where P is a \(n \times n\) positive semidefinite matrix with the same rank as A and where Q is an \(n \times n\) orthogonal matrix. (Hint: Use a singular value decomposition, \(A = U\sum {V^T}\), and observe that \(A = \left( {U\sum {U^T}} \right)\left( {U{V^T}} \right)\).) This decomposition is used, for instance, in mechanical engineering to model the deformation of a material. The matrix P describe the stretching or compression of the material (in the directions of the eigenvectors of P), and Q describes the rotation of the material in space.

Question: 5. Show that if v is an eigenvector of an \(n \times n\) matrix A and v corresponds to a nonzero eigenvalue of A, then v is in Col A. (Hint: Use the definition of an eigenvector.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free