Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Find an SVD of each matrix in Exercise 5-12. (Hint: In Exercise 11, one choice for U is \(\left( {\begin{array}{*{20}{c}}{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}\end{array}} \right)\). In Exercise 12, one column of U can be \(\left( {\begin{array}{*{20}{c}}{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\\{ - \frac{{\bf{2}}}{{\sqrt {\bf{6}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\end{array}} \right)\).)

7. \(\left( {\begin{array}{*{20}{c}}{\bf{2}}&{ - {\bf{1}}}\\{\bf{2}}&{\bf{2}}\end{array}} \right)\)

Short Answer

Expert verified

The singular value decomposition of \(A\) is, \(A = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}&{ - \frac{2}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\\{ - \frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\).

Step by step solution

01

The Singular Value Decomposition

Consider \(m \times n\) matrix with rank \(r\) as \(A\). There is a \(m \times n\) matrix \(\sum \) as seen in (3) wherein the diagonal entriesin \(D\) are the first \(r\) singular valuesof A, \({\sigma _1} \ge \cdots \ge {\sigma _r} > 0,\) and there arises an \(m \times m\) orthogonal matrix \(U\) and an \(n \times n\) orthogonal matrix \(V\) such that \(A = U\sum {V^T}\).

02

Find the eigenvalues of the given matrix

Let \(A = \left( {\begin{array}{*{20}{c}}2&{ - 1}\\2&2\end{array}} \right)\). The transpose of A is:

\({A^T} = \left( {\begin{array}{*{20}{c}}2&2\\{ - 1}&2\end{array}} \right)\)

Find the product \({A^T}A\).

\(\begin{array}{c}{A^T}A = \left( {\begin{array}{*{20}{c}}2&2\\{ - 1}&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}2&{ - 1}\\2&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}8&2\\2&5\end{array}} \right)\end{array}\)

The characteristic equation for \({A^T}A\) is:

\(\begin{array}{c}\det \left| {{A^T}A - \lambda I} \right| = 0\\\left| {\begin{array}{*{20}{c}}{8 - \lambda }&2\\2&{5 - \lambda }\end{array}} \right| = 0\\\left( {8 - \lambda } \right)\left( {5 - \lambda } \right) - 4 = 0\\{\lambda ^2} - 13\lambda + 36 = 0\\\lambda = 9,4\end{array}\)

03

Find the eigenvectors of the given matrix

The eigenvectors of the matrix for \(\lambda = 9\) are:

\({A^T}A - 9I = \left( {\begin{array}{*{20}{c}}{ - 1}&2\\2&{ - 4}\end{array}} \right)\)

Write the row-reduced Augmented matrix as:

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}{ - 1}&2&0\\2&{ - 4}&0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - 1}&2&0\\0&0&0\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_2} \to {R_2} + 2{R_1}} \right)\end{array}\)

So, the corresponding eigenvector is \(\left( {\begin{array}{*{20}{c}}2\\1\end{array}} \right)\).

The eigenvectors of the matrix for \(\lambda = 4\) are:

\({A^T}A - 4I = \left( {\begin{array}{*{20}{c}}4&2\\2&1\end{array}} \right)\)

Write the row-reduced Augmented matrix is:

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}4&2&0\\2&1&0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}4&2&0\\0&0&0\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_2} \to {R_2} - 2{R_1}} \right)\end{array}\)

So, the corresponding eigenvector is \(\left( {\begin{array}{*{20}{c}}{ - \frac{1}{2}}\\1\end{array}} \right)\).

04

Find the Eigenvector matrix

Normalize the eigenvector \(\left( {\begin{array}{*{20}{c}}2\\1\end{array}} \right)\) is:

\(\begin{array}{c}{{\bf{v}}_1} = \frac{1}{{\sqrt {{2^2} + {1^2}} }}\left( {\begin{array}{*{20}{c}}2\\1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

Normalize the eigenvector \(\left( {\begin{array}{*{20}{c}}{ - \frac{1}{2}}\\1\end{array}} \right)\) is:

\(\begin{array}{c}{{\bf{v}}_2} = \frac{1}{{\sqrt {{{\left( { - \frac{1}{2}} \right)}^2} + {1^2}} }}\left( {\begin{array}{*{20}{c}}{ - \frac{1}{2}}\\1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - \frac{1}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

The eigenvector matrix is:

\(\begin{array}{c}V = \left( {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}&{ - \frac{1}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

05

Find the value of \(\Sigma \)

The singular value is square root of eigenvalues of \({A^T}A\) i.e. 3 and 2. Thus the matrix \(\Sigma \) is:

\(\Sigma = \left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\)

06

Find the matrix U

Compute the column vectors \({{\bf{u}}_1}\) and \({{\bf{u}}_2}\):

\(\begin{array}{c}{{\bf{u}}_1} = \frac{1}{{\sqrt {{\lambda _1}} }}A{{\bf{v}}_1}\\ = \frac{1}{{\sqrt 9 }}\left( {\begin{array}{*{20}{c}}2&{ - 1}\\2&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

And

\(\begin{array}{c}{{\bf{u}}_2} = \frac{1}{{\sqrt {{\lambda _2}} }}A{{\bf{v}}_2}\\ = \frac{1}{{\sqrt 4 }}\left( {\begin{array}{*{20}{c}}2&{ - 1}\\2&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - \frac{1}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - \frac{2}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

The matrix Ucan be determined as follows:

\(\begin{array}{c}U = \left( {\begin{array}{*{20}{c}}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}&{ - \frac{2}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

The SVD of A can be written as,

\(\begin{array}{c}A = U\Sigma {V^T}\\ = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}&{ - \frac{2}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\\{ - \frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

Hence, the SVD of the given matrix is \(A = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}&{ - \frac{2}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\\{ - \frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(A = \left( {\begin{aligned}{{}}{\,\,\,2}&{ - 1}&{ - 1}\\{ - 1}&{\,\,\,2}&{ - 1}\\{ - 1}&{ - 1} &{\,\,\,2}\end{aligned}} \right)\),\({{\rm{v}}_1} = \left( {\begin{aligned}{{}}{ - 1}\\{\,\,\,0}\\{\,\,1}\end{aligned}} \right)\) and and\({{\rm{v}}_2} = \left( {\begin{aligned}{{}}{\,\,\,1}\\{\, - 1}\\{\,\,\,\,1}\end{aligned}} \right)\). Verify that\({{\rm{v}}_1}\), \({{\rm{v}}_2}\) an eigenvector of \(A\). Then orthogonally diagonalize \(A\).

(M) Compute an SVD of each matrix in Exercises 26 and 27. Report the final matrix entries accurate to two decimal places. Use the method of Examples 3 and 4.

26. \(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{ - {\bf{18}}}&{{\bf{13}}}&{ - {\bf{4}}}&{\bf{4}}\\{\bf{2}}&{{\bf{19}}}&{ - {\bf{4}}}&{{\bf{12}}}\\{ - {\bf{14}}}&{{\bf{11}}}&{ - {\bf{12}}}&{\bf{8}}\\{ - {\bf{2}}}&{{\bf{21}}}&{\bf{4}}&{\bf{8}}\end{array}} \right)\)

Question: If A is \(m \times n\), then the matrix \(G = {A^T}A\) is called the Gram matrix of A. In this case, the entries of G are the inner products of the columns of A. (See Exercises 9 and 10).

9. Show that the Gram matrix of any matrix A is positive semidefinite, with the same rank as A. (See the Exercises in Section 6.5.)

Question: If A is \(m \times n\), then the matrix \(G = {A^T}A\) is called the Gram matrix of A. In this case, the entries of G are the inner products of the columns of A. (See Exercises 9 and 10).

10. Show that if an \(n \times n\) matrix G is positive semidefinite and has rank r, then G is the Gram matrix of some \(r \times n\) matrix A. This is called a rank-revealing factorization of G. (Hint: Consider the spectral decomposition of G, and first write G as \(B{B^T}\) for an \(n \times r\) matrix B.)

Orthogonally diagonalize the matrices in Exercises 13โ€“22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17โ€“22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

19. \(\left( {\begin{aligned}{{}}3&{ - 2}&4\\{ - 2}&6&2\\4&2&3\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free