Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Find an SVD of each matrix in Exercise 5-12. (Hint: In Exercise 11, one choice for U is \(\left( {\begin{array}{*{20}{c}}{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}\end{array}} \right)\). In Exercise 12, one column of U can be \(\left( {\begin{array}{*{20}{c}}{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\\{ - \frac{{\bf{2}}}{{\sqrt {\bf{6}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\end{array}} \right)\).

6. \(\left( {\begin{array}{*{20}{c}}{ - {\bf{3}}}&{\bf{0}}\\{\bf{0}}&{ - {\bf{2}}}\end{array}} \right)\)

Short Answer

Expert verified

The singular value decomposition of \(A\) is, \(A = \left( {\begin{array}{*{20}{c}}{ - 1}&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)\)

Step by step solution

01

The Singular Value Decomposition

Consider \(m \times n\) matrix with rank \(r\) as \(A\). There is a \(m \times n\) matrix \(\sum \) as seen in (3) wherein the diagonal entriesin \(D\) are the first \(r\) singular valuesof A, \({\sigma _1} \ge \cdots \ge {\sigma _r} > 0,\) and there arises an \(m \times m\) orthogonal matrix \(U\) and an \(n \times n\) orthogonal matrix \(V\) such that \(A = U\sum {V^T}\).

02

Find the eigenvalues and eigenvectors of the given matrix

Let \(A = \left( {\begin{aligned}{{}}{ - 3}&0\\0&{ - 2}\end{aligned}} \right)\). The transpose of A is:

\({A^T} = \left( {\begin{aligned}{{}}{ - 3}&0\\0&{ - 2}\end{aligned}} \right)\)

Find the product \({A^T}A\).

\(\begin{aligned}{}{A^T}A = \left( {\begin{aligned}{{}}{ - 3}&0\\0&{ - 2}\end{aligned}} \right)\left( {\begin{aligned}{{}}{ - 3}&0\\0&{ - 2}\end{aligned}} \right)\\ = \left( {\begin{aligned}{{}}9&0\\0&4\end{aligned}} \right)\end{aligned}\)

So, the eigenvalues of the matrix are 9 and 4. The eigenvectors can be calculated as,

\(\begin{aligned}{}\left( {\begin{aligned}{{}}9&0\\0&4\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) = \left( {\begin{aligned}{{}}0\\0\end{aligned}} \right)\\9{x_1} = 0\\4{x_2} = 0\end{aligned}\)

So, the eigenvectors of the matrix are\(\left( {\begin{aligned}{{}}1\\0\end{aligned}} \right)\) and \(\left( {\begin{aligned}{{}}0\\1\end{aligned}} \right)\).

03

Find the value of

The singular value is the square root of eigenvalues of \({A^T}A\) , that are, 3 and 2. Thus the matrix \(\Sigma \) is:

\(\Sigma = \left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\)

04

Find the matrix U

Consider the following equations:

\(\begin{array}{c}\Sigma U = AV\\\left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{y_1}}&{{y_3}}\\{{y_2}}&{{y_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 3}&0\\0&{ - 2}\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{3{y_1}}&0\\0&{2{y_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 3}&0\\0&{ - 2}\end{array}} \right)\end{array}\)

On comparing two sides of the equation \({y_1} = - 1\), \({y_2} = 0\), \({y_3} = 0\) and \({y_4} = - 1\)

The matrix U can be written as,

\(U = \left( {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right)\)

Then by using \(A = U\sum {V^T}\).

\(A = \left( {\begin{array}{*{20}{c}}{ - 1}&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)\)

Hence, the SVD of A can be written as, \(A = \left( {\begin{array}{*{20}{c}}{ - 1}&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.

40. \(\left( {\begin{aligned}{{}}{\bf{8}}&{\bf{2}}&{\bf{2}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{2}}&{\bf{8}}&{\bf{2}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{2}}&{\bf{2}}&{\bf{8}}&{ - {\bf{6}}}&{\bf{9}}\\{ - {\bf{6}}}&{ - {\bf{6}}}&{ - {\bf{6}}}&{{\bf{24}}}&{\bf{9}}\\{\bf{9}}&{\bf{9}}&{\bf{9}}&{\bf{9}}&{ - {\bf{21}}}\end{aligned}} \right)\)

Question: 13. The sample covariance matrix is a generalization of a formula for the variance of a sample of \(N\) scalar measurements, say \({t_1},................,{t_N}\). If \(m\) is the average of \({t_1},................,{t_N}\), then the sample variance is given by

\(\frac{1}{{N - 1}}\sum\limits_{k = 1}^n {{{\left( {{t_k} - m} \right)}^2}} \)

Show how the sample covariance matrix, \(S\), defined prior to Example 3, may be written in a form similar to (1). (Hint: Use partitioned matrix multiplication to write \(S\) as \(\frac{1}{{N - 1}}\) times the sum of \(N\) matrices of size \(p \times p\). For \(1 \le k \le N\), write \({X_k} - M\) in place of \({\hat X_k}\).)

Classify the quadratic forms in Exercises 9โ€“18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.

14. \({\bf{3}}x_{\bf{1}}^{\bf{2}} + {\bf{4}}{x_{\bf{1}}}{x_{\bf{2}}}\)

Find the matrix of the quadratic form. Assume x is in \({\mathbb{R}^2}\).

a. \(3x_1^2 + 2x_2^2 - 5x_3^2 - 6{x_1}{x_2} + 8{x_1}{x_3} - 4{x_2}{x_3}\)

b. \(6{x_1}{x_2} + 4{x_1}{x_3} - 10{x_2}{x_3}\)

Question: Let \({x_1}\,,{x_2}\) denote the variables for the two-dimensional data in Exercise 1. Find a new variable \({y_1}\) of the form \({y_1} = {c_1}{x_1} + {c_2}{x_2}\), with\(c_1^2 + c_2^2 = 1\), such that \({y_1}\) has maximum possible variance over the given data. How much of the variance in the data is explained by \({y_1}\)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free