Chapter 7: Q7.4-6E (page 395)
Question: Find an SVD of each matrix in Exercise 5-12. (Hint: In Exercise 11, one choice for U is \(\left( {\begin{array}{*{20}{c}}{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}\end{array}} \right)\). In Exercise 12, one column of U can be \(\left( {\begin{array}{*{20}{c}}{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\\{ - \frac{{\bf{2}}}{{\sqrt {\bf{6}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\end{array}} \right)\).
6. \(\left( {\begin{array}{*{20}{c}}{ - {\bf{3}}}&{\bf{0}}\\{\bf{0}}&{ - {\bf{2}}}\end{array}} \right)\)
Short Answer
The singular value decomposition of \(A\) is, \(A = \left( {\begin{array}{*{20}{c}}{ - 1}&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)\)