Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(M) Compute an SVD of each matrix in Exercises 26 and 27. Report the final matrix entries accurate to two decimal places. Use the method of Examples 3 and 4.

26. \(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{ - {\bf{18}}}&{{\bf{13}}}&{ - {\bf{4}}}&{\bf{4}}\\{\bf{2}}&{{\bf{19}}}&{ - {\bf{4}}}&{{\bf{12}}}\\{ - {\bf{14}}}&{{\bf{11}}}&{ - {\bf{12}}}&{\bf{8}}\\{ - {\bf{2}}}&{{\bf{21}}}&{\bf{4}}&{\bf{8}}\end{array}} \right)\)

Short Answer

Expert verified

The singular value decomposition of \(A\) is:\(A = \left( {\begin{array}{*{20}{c}}{.5}&{ - .5}&{ - .5}&{ - .5}\\{.5}&{.5}&{.5}&{ - .5}\\{.5}&{ - .5}&{.5}&{.5}\\{.5}&{.5}&{ - .5}&{.5}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{40}&0&0&0\\0&{20}&0&0\\0&0&{10}&0\\0&0&0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - .4}&{.8}&{ - .2}&{.4}\\{.8}&{.4}&{.4}&{.2}\\{.4}&{ - .2}&{ - .8}&{.4}\\{ - .2}&{ - .4}&{.4}&{.8}\end{array}} \right)\)

Step by step solution

01

Write the matrix 

Find the transpose of the matrix\(A\)by using MATLAB commands.

\( > > B = A';\)

\(B = \left( {\begin{array}{*{20}{c}}{ - 18}&2&{ - 14}&{ - 2}\\{13}&{19}&{11}&{21}\\{ - 4}&{ - 4}&{ - 12}&4\\4&{12}&8&8\end{array}} \right)\)

Find the product of \(A\) and \(B\).

\( > > {\rm{ }}C = B*A;\)

\(C = \left( {\begin{array}{*{20}{c}}{528}&{ - 392}&{224}&{ - 176}\\{ - 392}&{1092}&{ - 176}&{536}\\{224}&{ - 176}&{192}&{ - 128}\\{ - 176}&{536}&{ - 128}&{288}\end{array}} \right)\)

02

Find eigenvalues and eigenvectors of the matrix \(AB\)

Find the eigenvectors of the matrix \(AB\).

\( > > {\rm{ }}\left( {V{\rm{ }}B} \right) = eigs\left( C \right);\)

\(V = \left( {\begin{array}{*{20}{c}}{ - \frac{2}{5}}&{\frac{4}{5}}&{\frac{2}{5}}&{ - \frac{1}{5}}\\{\frac{4}{5}}&{\frac{2}{5}}&{ - \frac{1}{5}}&{ - \frac{2}{5}}\\{ - \frac{1}{5}}&{\frac{2}{5}}&{ - \frac{4}{5}}&{\frac{2}{5}}\\{\frac{2}{5}}&{\frac{1}{5}}&{\frac{2}{5}}&{\frac{2}{5}}\end{array}} \right)\)

\(\begin{array}{l} > > {\rm{ }}SIGMA = {\rm{ }}diag\left( {sqrt\left( E \right)} \right);\\ > > {\rm{ }}SS = sqrt\left( E \right);\end{array}\)

Then we have\(\sum \)the matrix.

\(\sum = \left( {\begin{array}{*{20}{c}}{40}&0&0&0\\0&{20}&0&0\\0&0&{10}&0\\0&0&0&0\end{array}} \right)\)

03

Find the singular value decomposition of\(A\)

Write the vectors of the\(U\)matrix:

\(\begin{array}{l} > > {\rm{ }}u1{\rm{ }} = {\rm{ }}\left( {1/SS\left( 1 \right)} \right)*A*V\left( {:,1} \right);\\ > > {\rm{ }}u2{\rm{ }} = {\rm{ }}\left( {1/SS\left( 2 \right)} \right)*A*V\left( {:,2} \right);\\ > > {\rm{ }}u3{\rm{ }} = {\rm{ }}\left( {1/SS\left( 3 \right)} \right)*A*V\left( {:,3} \right);\\ > > {\rm{ }}u4{\rm{ }} = {\rm{ }}(1/SS\left( 4 \right)*A*V\left( {:,4} \right);\\ > > {\rm{ }}U = \left( {u1;u2;u3;u4} \right);\end{array}\)

\(U = \left( {\begin{array}{*{20}{c}}{\frac{1}{2}}&{ - \frac{1}{2}}&{ - \frac{1}{2}}&{ - \frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}\\{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}\end{array}} \right)\)

Therefore, the singular value decomposition of\(A\)is:

\(\begin{array}{c}A = U\sum {V^T}\\ = \left( {\begin{array}{*{20}{c}}{\frac{1}{2}}&{ - \frac{1}{2}}&{ - \frac{1}{2}}&{ - \frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}\\{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{40}&0&0&0\\0&{20}&0&0\\0&0&{10}&0\\0&0&0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - \frac{2}{5}}&{\frac{4}{5}}&{\frac{2}{5}}&{ - \frac{1}{5}}\\{\frac{4}{5}}&{\frac{2}{5}}&{ - \frac{1}{5}}&{ - \frac{2}{5}}\\{ - \frac{1}{5}}&{\frac{2}{5}}&{ - \frac{4}{5}}&{\frac{2}{5}}\\{\frac{2}{5}}&{\frac{1}{5}}&{\frac{2}{5}}&{\frac{2}{5}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{.5}&{ - .5}&{ - .5}&{ - .5}\\{.5}&{.5}&{.5}&{ - .5}\\{.5}&{ - .5}&{.5}&{.5}\\{.5}&{.5}&{ - .5}&{.5}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{40}&0&0&0\\0&{20}&0&0\\0&0&{10}&0\\0&0&0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - .4}&{.8}&{ - .2}&{.4}\\{.8}&{.4}&{.4}&{.2}\\{.4}&{ - .2}&{ - .8}&{.4}\\{ - .2}&{ - .4}&{.4}&{.8}\end{array}} \right)\end{array}\)

Thus, \(A = \left( {\begin{array}{*{20}{c}}{.5}&{ - .5}&{ - .5}&{ - .5}\\{.5}&{.5}&{.5}&{ - .5}\\{.5}&{ - .5}&{.5}&{.5}\\{.5}&{.5}&{ - .5}&{.5}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{40}&0&0&0\\0&{20}&0&0\\0&0&{10}&0\\0&0&0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - .4}&{.8}&{ - .2}&{.4}\\{.8}&{.4}&{.4}&{.2}\\{.4}&{ - .2}&{ - .8}&{.4}\\{ - .2}&{ - .4}&{.4}&{.8}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Orthogonally diagonalize the matrices in Exercises 13โ€“22, giving an orthogonal matrix \(P\) and a diagonal matrix \(D\). To save you time, the eigenvalues in Exercises 17โ€“22 are: (17) \( - {\bf{4}}\), 4, 7; (18) \( - {\bf{3}}\), \( - {\bf{6}}\), 9; (19) \( - {\bf{2}}\), 7; (20) \( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

15. \(\left( {\begin{aligned}{{}}{\,3}&4\\4&9\end{aligned}} \right)\)

Make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form \(x_{\bf{1}}^{\bf{2}} + {\bf{10}}{x_{\bf{1}}}{x_{\bf{2}}} + x_{\bf{2}}^{\bf{2}}\) into a quadratic form with no cross-product term. Give P and the new quadratic form.

Question: 4. Let A be an \(n \times n\) symmetric matrix.

a. Show that \({({\rm{Col}}A)^ \bot } = {\rm{Nul}}A\). (Hint: See Section 6.1.)

b. Show that each y in \({\mathbb{R}^n}\) can be written in the form \(y = \hat y + z\), with \(\hat y\) in \({\rm{Col}}A\) and z in \({\rm{Nul}}A\).

Orthogonally diagonalize the matrices in Exercises 13โ€“22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17โ€“22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

18. \(\left( {\begin{aligned}{{}}1&{ - 6}&4\\{ - 6}&2&{ - 2}\\4&{ - 2}&{ - 3}\end{aligned}} \right)\)

Classify the quadratic forms in Exercises 9โ€“18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.

14. \({\bf{3}}x_{\bf{1}}^{\bf{2}} + {\bf{4}}{x_{\bf{1}}}{x_{\bf{2}}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free